Three-dimensional spider webs feature highly intricate fiber architectures, which can be represented via 3-D scanning and modeling. To allow novel interpretations of the key features of a 3-D Cyrtophora citricola spider web, we translate complex 3-D data from the original web model into music, using data sonification. We map the spider web data to audio parameters such as pitch, amplitude, and envelope. Paired with a visual representation, the resulting audio allows a unique and holistic immersion into the web that can describe features of the 3-D architecture (fiber distance, lengths, connectivity, and overall porosity of the structure) as a function of spatial location in the web. Using granular synthesis, we further develop a method to extract musical building blocks from the sonified web, transforming the original representation of the web data into new musical compositions. We build a new virtual, interactive musical instrument in which the physical 3-D web data are used to generate new variations in sound through exploration of different spatial locations and grain-processing parameters. The transformation of sound from grains to musical arrangements (variations of melody, rhythm, harmony, chords, etc.) is analogous to the natural bottom–up processing of proteins, resembling the design of sequence and higher-level hierarchical protein material organization from elementary chemical building blocks. The tools documented here open possibilities for creating virtual instruments based on spider webs for live performances and art installations, suggesting new possibilities for immersion into spider web data, and for exploring similarities between protein folding, on the one hand, and assembly and musical expression, on the other.
Spiders are nature’s engineers that build lightweight and high-performance web architectures often several times their size and with very few supports; however, little is known about web mechanics and geometries throughout construction, especially for three-dimensional (3D) spider webs. In this work, we investigate the structure and mechanics for a Tidarren sisyphoides spider web at varying stages of construction. This is accomplished by imaging, modeling, and simulations throughout the web-building process to capture changes in the natural web geometry and the mechanical properties. We show that the foundation of the web geometry, strength, and functionality is created during the first 2 d of construction, after which the spider reinforces the existing network with limited expansion of the structure within the frame. A better understanding of the biological and mechanical performance of the 3D spider web under construction could inspire sustainable robust and resilient fiber networks, complex materials, structures, scaffolding, and self-assembly strategies for hierarchical structures and inspire additive manufacturing methods such as 3D printing as well as inspire artistic and architectural and engineering applications.
3D spider webs exhibit highly intricate fiber architectures and owe their outstanding performance to a hierarchical organization that spans orders of magnitude in length scale from the molecular silk protein, to micrometer-sized fibers, and up to cm-scale web. Similarly, but in a completely different physical manifestation, music has a hierarchical structure composed of elementary sine wave building blocks that can be combined with other waveforms to create complex timbres, which are then arranged within larger-scale musical compositions. Although apparently different, spider webs and music have many similarities, as we point out in this work. Here, we propose an intuitive and interactive way to explore and visualize a 3D Cyrtophora citricola spider web geometry that has been digitally modeled with micron-scale details from full-scale laboratory experiments. We use model-based sonification to translate the web architecture into sound, allowing for aural perception and interpretation of its essential topological features. We implement this sonification using Unity3D and Max/MSP to create an interactive spider web environment in which a user travels through a virtual spider web. Each silk fiber in their field of view is sonified using different sine waves. Together, the sonified fibers create new and more complex timbres that reflects the architecture of 3D spider webs. These concepts are implemented into a spider web-based instrument for live performances, art installations and data exploration. It provides an unprecedented and creative way to immerse the composer, audience and user in an immersive multimedia experience generated by the complexity of a 3D spider web.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.