The paper describes the original robotic arm designed by our team kinematic design consisting of universal rotational modules (URM). The philosophy of modularity plays quite an important role when it comes to this mechanism since the individual modules will be the building blocks of the entire robotic arm. This is a serial kinematic chain with six degrees of freedom of unlimited rotation. It was modeled in three different environments to obtain the necessary visualizations, data, measurements, structural changes measurements and structural changes. In the environment of the CoppeliaSim Edu, it was constructed mainly to obtain the joints coordinates matching the description of a certain spatial trajectory with an option to test the software potential in future inverse task calculations. In Matlab, the model was constructed to check the mathematical equations in the area of kinematics, the model’s simulations of movements, and to test the numerical calculations of the inverse kinematics. Since the equipment at hand is subject to constant development, its model can also be found in SolidWorks. Thus, the model’s existence in those three environments has enabled us to compare the data and check the models’ structural designs. In Matlab and SolidWorks, we worked with the data imported on joints coordinates, necessitating overcoming certain problems related to calculations of the inverse kinematics. The objective was to compare the results, especially in terms of the position kinematics in Matlab and SolidWorks, provided the initial joint coordinate vector was the same.
Static stiffness is determined by one-sided loading and unloading of machine parts relative to the selected base. For each structure, there will be some loss of potential energy due to the dissipative forces that occur during the loading inside the structure. This loss is manifested in hysteresis in the stiffness diagram. A new approach to the assessment of static stiffness consists in gradual, bilateral loading and unloading of the structure through the effect of static forces of different magnitude. In this process, the stiffness hysteresis varies, depending on the intrinsic nature of the dissipative forces, a specific property suitable for assessing the condition of machines.
This paper deals with a modified methodology for measuring the static stiffness of the machine tool. Inspiration to modify the commonly used expanded method of static stiffness measurement resulted from considerably different experimentally measured static stiffness values in the simulated process of load application under laboratory conditions compared to the standard method. An important takeaway from the measurements is that the measured static stiffness of the table depends greatly on the previous work performed thereon and on the method of the load application onto the table. This modified view of the static stiffness of the machine can have an impact on the increased emphasis on eliminating the phenomena related thereto. It is applicable in engineering practice, in particular in the field of machine tool design, where it will ensure higher machining precision under comparable conditions. In the experiments performed, deformations and displacements were measured with a laser interferometer.
The input of this paper lies in displaying possibilities how to determine the condition of a coordinate measuring machine (CMM) based on a large number of repeated measurements. The number of repeated measurements exceeds common requirements for determining positioning accuracy. The total offset in the accuracy of spatial positioning consists of partial inaccuracies of individual axes. 6 basic errors may be defined at each axis. In a triaxial set, that translates into 18 errors, to which an offset from the perpendicularity between the axial pairs must be added. Therefore, the combined number of errors in a single position is 21. These errors are systemic and stem from the machine's geometry. In addition, there are accidental errors to account for as well. Accidental errors can be attributed to vibrations, mass inertness, passive resistance, and in part to fluctuations in temperature. A peculiar set of systemic errors are time-varying errors. The nature of those errors may be reversible, for instance if they result from influence of temperature or elastic deformation. They can be also irreversible, for example as a result of wear and tear or line clogging, due to loosened connection or permanent deformation of a part post collision. A demonstration of thermal equalizing of the machine's parts may also be observed in case of failure to adhere to a sufficient time interval from the moment the air-conditioning is turned on. Repeated measurements done on a selected axis with linear interferometer can provide complex information on the CMM condition and also on the machine's interaction with the given technical environment.
Analysis of three-temperature heating system has revealed the apparent advantages and disadvantages that the combination of thermodynamic systems has in future development with respect to environmental and economic issues. Three-temperature heating systems consist of a heat engine and a heat pump, thus enabling maximum use of the primary thermal source for heating buildings. It seems that the combination of a Stirling engine, or a similar heat drive, with a heat pump is suitable. In order to analyse the effectiveness of such a system, a comprehensive calculation procedure is used as follows: its basis lies in accounting for all types of energy and their relationship to the original natural resource. The present study aims to point out that the combination of a Stirling engine and a heat pump is a useful solution due to the fact that it has the most favourable resultant economic impact in comparison to the use of a diesel, four-stroke gas or the most commonly used electric drive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.