Radiotherapy is a highly complex and efficient treatment modality for ablation of malignant tumors. Despite several technological advances, determination of the dose delivered to the tumor remains a challenge due to limitations of complex fabrication, cumbersome operation, and high costs associated with current dosimeters. Here, we describe fundamental studies and development of a novel gel-based colorimetric nanosensor for detecting therapeutic levels of X-rays (1-10 Gy) administered in clinical radiotherapy. Following exposure to X-rays, gold salts in the gel were converted to nanoparticles within the matrix, resulting in the formation of a maroon-colored plasmonic gel. Differences in color intensity of the gel following irradiation were used as a quantitative indicator of the radiation dose employed. The gelbased nanosensor was able to detect doses as low as 0.5 Gy, and demonstrated a linear detection range of 0 -3 Gy, which indicates its application in the fractionated radiotherapy regime. The gel was also able to successfully report therapeutic levels of radiation doses administered to anthropomorphic tissue phantoms. The range of detection, ease of fabrication, simplicity of colorimetric detection, and relatively lower costs indicate that this technology can be potentially translated to different radiotherapy applications in the clinic.
Despite the emergence of sophisticated technologies in treatment planning and administration, routine determination of delivered radiation doses remains a challenge due to limitations associated with conventional dosimeters. Here, we describe a gel-based nanosensor for the colorimetric detection and quantification of topographical radiation dose profiles in radiotherapy. Exposure to ionizing radiation results in the conversion of gold ions in the gel to gold nanoparticles, which render a visual change in color in the gel due to their plasmonic properties. The intensity of color formed in the gel was used as a quantitative reporter of ionizing radiation. The gel nanosensor was used to detect complex topographical dose patterns including those administered to an anthropomorphic phantom and live canine patients undergoing clinical radiotherapy. The ease of fabrication, operation, rapid readout, colorimetric detection, and relatively low cost illustrate the translational potential of this technology for topographical dose mapping in radiotherapy applications in the clinic.
The use of X-ray radiation in radiotherapy is a common treatment for many cancers.Despite several scientific advances, determination of radiation delivered to the patient remains a challenge due to the inherent limitations of existing dosimeters including fabrication and operation. Here, we describe a colorimetric nanosensor that exhibits unique changes in color as a function of therapeutically relevant radiation dose (3-15 Gy). The nanosensor is formulated using a gold salt and maltose-binding protein as a templating agent, which upon exposure to ionizing radiation is converted to gold nanoparticles. The formation of gold nanoparticles from colorless precursor salts renders a change in color that can be observed visually. The dose-dependent multicolored response was quantified through a simple ultraviolet-visible spectrophotometer and the peak shift associated with the different colored dispersions was used as a quantitative indicator of therapeutically relevant radiation doses. The ease of fabrication, visual color changes upon exposure to ionizing radiation, and quantitative read-out demonstrates the potential of protein-facilitated biomineralization approaches to promote the development of next-generation detectors for ionizing radiation.
The Laitinen stereotactic localizer is well tolerated with accurate reproducibility during stereotactic radiation therapy. Preliminary local control rates are consistent with those in other reports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.