ObjectiveAcute single strenuous exercise increases circulating cell free DNA (cf DNA). We tested whether three repeated bouts of exhaustive exercise induced the cf DNA response without development of tolerance in healthy men.MethodsEleven average-trained men (age 34.0±5.2 years, body mass index 26.2±3.1 kg/m2, maximal oxygen consumption—VO2max 49.6±4.5 ml/kg*min) performed three treadmill exercise tests to exhaustion at speed corresponding to 70% VO2max separated by 72 hours of resting. Blood was collected before and after each bout of exercise for determination of cell free nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, selected markers of muscle damage, and blood cell count.ResultsEach bout induced the increase (p<0.05) in plasma cf n-DNA: from 3.4±1.4 to 38.5±27.5, from 4.1±3.3 to 48.5±26.2, and 3.1±1.6 to 53.8±39.9 ng/mL after the first, second, and third exercise, respectively. In a congruent way, cf mt-DNA rose significantly after the second (from 229±216 to 450±228*103 GE/mL) and third bout of exercise (from 173±120 to 462±314*103 GE/mL).Pre-exercise cf mt-DNA decreased (p<0.05) by 2-times (from 355±219 before the first bout to 173±120*103 GE/mL before the third bout) over the study period and were accompanied by significant increase in white blood cells, platelets, creatine kinase, creatinine and lactate after each bout. However, the exercise induced percentage increment of cf n-DNA was always many times higher than corresponding increments of the afore-mentioned markers at any occasion.ConclusionsRepeated bouts of exhaustive exercise induced remarkable increase in circulating cf n-DNA without signs of tolerance development. Baseline cf mt-DNA decreased in response to series of strenuous exercise. Since percentage increments of cf n-DNA in response to exercise were many times higher than those observed for other markers, measurement of circulating cf n-DNA could be a sensitive tool for monitoring acute exercise effects in human body.
Strenuous exercise increases circulating cell free DNA (cfDNA) and stimulates blood phagocytes to generate reactive oxygen species (ROS) which may induce DNA strand breaks. We tested whether: (A) elevated cfDNA in response to three repeated bouts of exhaustive exercise has decreased integrity; (B) each bout of exercise increases luminol enhanced whole blood chemiluminescence (LBCL) as a measure of ROS production by polymorphonuclear leukocytes. Eleven men performed three treadmill exercise tests to exhaustion separated by 72 hours of resting. Pre- and post-exercise concentrations and integrity of cf nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) and resting (r) and fMLP (n-formyl-methionyl-leucyl-phenylalanine)-stimulated LBCL were determined. Each bout increased concentrations of cf n-DNA by more than 10-times which was accompanied by about 2-times elevated post-exercise rLBCL and fMLP-LBCL. Post-exercise cf n-DNA integrity (integrity index, I229/97) decreased after the first (0.59 ± 0.19 vs. 0.48 ± 0.18) and second (0.53 ± 0.14 vs. 0.44 ± 0.17) bout of exercise. There were negative correlations between I229/97 and rLBCL (ƍ = –0.37), and I229/97 and fMLP-LBCL (ƍ = –0.40) – analysis of pooled pre- and post-exercise data (n = 66). cf mt- DNA integrity (I218/78) did not alter in response to exercise. This suggests an involvement of phagocyte ROS in cf n-DNA strand breaks in response to exhaustive exercise.
Numerous studies have shown that cf nDNA significantly rises in stress caused by exercise. However, during nuclear decondensation, released DNA is followed by histones. Histones are also a common disease marker. After PAD4 mediated hypercitrullination extracellular H3Cit exhibits high toxicity contributing to tissue damage which, in cases of systemic inflammation, may lead to multiorgan failure and finally to death. We tested whether circulating histones rise in response to strenuous exercise. Eleven average-trained men performed three treadmill exercise tests to exhaustion at speed corresponding to 70% VO2max separated by 72 h of resting. Blood was collected before and just after each bout of exercise and plasma proteins were measured using enzyme-linked immunosorbent assay, whereas platelet activity was estimated with Light Transmission Aggregometry. Both, circulating histones and PAD4 raised in response to exercise. Plasma citrullinated histones increased from 3.1 ng/mL to 5.96 ng/mL (p = 0.0059), from 3.65 ng/mL to 6.37 ng/mL (p = 0.02), and from 3.86 ng/mL to 4.75 ng/mL (p = 0.033) after the first, second, and third treadmill run, respectively. However despite the parallel increase, no significant correlation between citrullinated histone and aggregation or cell-free nDNA was found. Furthermore, positive correlations of cf nDNA with aggregation and PAD4, lactate with aggregation, and lactate with citrullinated histone have been observed.
It is believed that neutrophils extracellular traps (NETs) formation is responsible for the increase in cf DNA after exercise. Since T1DM is accompanied by enhanced NETs generation, we compared exercise-induced increase in cf DNA in 14 men with T1DM and 11 healthy controls and analyzed its association with exercise load. Subjects performed a treadmill run to exhaustion at speed corresponding to 70% of their personal VO2max. Blood was collected before and just after exercise for determination of plasma cf nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, blood cell count and metabolic markers. Exercise resulted in the increase in median cf n-DNA from 3.9 ng/mL to 21.0 ng/mL in T1DM group and from 3.3 ng/mL to 28.9 ng/mL in controls. Median exercise-induced increment (∆) in cf n-DNA did not differ significantly in both groups (17.8 ng/mL vs. 22.1 ng/mL, p = 0.23), but this variable correlated with run distance (r = 0.66), Δ neutrophils (r = 0.86), Δ creatinine (r = 0.65) and Δ creatine kinase (r = 0.77) only in controls. Pre- and post-exercise cf mt-DNA were not significantly different within and between groups. These suggest low usefulness of Δ cf n-DNA as a marker of exercise intensity in T1DM men.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.