This review paper focuses on the effects of microwave irradiation on heterogeneous gas phase catalytic reaction systems. Both experimental and modeling approaches are discussed. The currently available methods for temperature measurements in the microwave heating of solid particles are critically examined. The existence of microwave-created temperature gradients in beds of solid particles is discussed. The not fully established mechanism of catalyst (nano)particle heating and imperfect temperature measurement techniques implicate that different effects are often observed and contradictory conclusions are drawn. For further progress here, the development of accurate and possibly non-invasive techniques for local temperature measurements under microwave irradiation is needed.
The accuracy and reproducibility of temperature measurements in solid materials under microwave heating are investigated in this work using two of the most celebrated temperature measurement techniques, namely fiber optic probes (FO) and infrared (IR) sensors. Two solid materials with a wide range of applications in heterogeneous catalysis and different microwave absorbing capabilities are examined: CeO 2 -ZrO 2 and Al 2 O 3 particles. We investigate a number of effects ranging from purely technical issues, such as the use of a glass probe guide, over process operation parameters, such as the kind and the volume of the heated sample, to measurement related issues, such as the exact location of the probe in the sample. In this frame, the FO and IR methods are benchmarked. It was found that when using bare FO probes, not only is their lifetime reduced but also the reproducibility of the results is compromised. Using a glass probe guide greatly assists in precise location of the probe in the sample resulting in more reproducible temperature measurements. The FO reproducibility, though, decreases with increasing temperature. Besides, contrary to conventional heating, the sample temperature decreases with decreasing sample mass (and volume) at constant irradiation power level, confirming the volumetric nature of microwave heating. Furthermore, a strongly non-uniform temperature field is developed in the reactor despite the use of a monomode cavity and small amounts of samples. These temperature variations depending on the volume and position can only by detected by FO. In contrast, IR, which actually measures temperature at the exterior of the reactor wall, remains nearly insensitive to them and consistently underestimates the real temperature in the reactor. The modeler and the experimentalist should be rather circumspect in accepting the IR output as a representative reactor temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.