Biosensors and immunosensors show an increasing attractiveness when developing current cheap and fast monitoring and detecting devices. In this work, a model of immunosensor in a class of delayed lattice differential equations is offered and studied. The spatial operator describes symmetric diffusion processes of antigenes between pixels. The main results are devoted to the qualitative research of the model. The conditions of global asymptotic stability, which are constructed with the help of Lyapunov functionals, determine a lower estimate of the time of immune response. Nonlinear analysis of the model is performed with help of a series of numerical characteristics including autocorrelation function, mutual information, embedding, and correlation dimensions, sample entropy, the largest Lyapunov exponents. We consider the influence of both symmetric and unsymmetric diffusion of antigens between pixels on the qualitative behavior of the system. The outcomes are verified with the help of numerical simulation in cases of 4 × 4 - and 16 × 16 - arrays of immunopixels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.