A series of solution-processable tetraalkoxy-substituted dinaphtho[2,3-a:2′,3′-h]phenazines were synthesized by reductive functionalization of indanthrone (6,15-dihydrodinaphtho-[2,3-a:2′,3′-h]phenazine-5,9,14,18-tetraone), an old intractable dye. The melting point of these new compounds was found to decrease from 204 °C to 98 °C upon extension of the number of carbons from 4 to 12 in the alkoxy substituent. All derivatives show a strong tendency to self-organize in 2D as evidenced by STM investigations of monolayers deposited on HOPG. The 2D structure is less dense and shows different alkoxy group interdigitation pattern as compared to the 3D structure determined from the X-ray diffraction data obtained for the corresponding single crystals. Electrochemical, absorption, and emission properties of tetraalkoxy-substituted dinaphtho[2,3-a:2′,3′-h]phenazines, studied in solution, are essentially independent of the length of the alkoxy substituents. All derivatives exhibit high photoluminescence quantum yield, approaching 60%. When molecularly dispersed in a solid matrix consisting of poly(9-vinylcarbazole) (PVK) (60 wt %) and (2tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole) (PBD) (40 wt %) (so-called "guest/host configuration"), they show green electroluminescence due to an effective energy transfer from the matrix to the luminophore. The best light-emitting diodes were obtained for the butoxy derivative showing a luminance approaching 1500 cd/m 2 and a luminous efficiency over 0.8 cd/A.
The effect of the chain length on the type and extent of the 2D supramolecular organization in poly(4,4''-dioctyl-2,2':5',2''-terthiophene) (PDOTT) monomolecular layers deposited on highly oriented pyrolytic graphite (HOPG) is studied by scanning tunneling microscopy (STM) and analyzed in terms of molecular modeling. The strictly monodispersed fractions of increasing molecular mass used in this study were obtained by chromatographic fractionation of the crude product of 4,4''-dioctyl-2,2':5',2''-terthiophene oxidative polymerization. STM investigations of PDOTT layers, deposited on HOPG from poly- and monodispersed fractions, show that polydispersity can be considered as a key factor seriously limiting supramolecular ordering. This is a consequence of significant differences in the type of supramolecular order observed for molecules of different chain length. It has been demonstrated that shorter molecules (consisting of 6 and 9 thiophene units) form well-defined two-dimensional islands, while the interactions between longer molecules (consisting of 12 and 15 thiophene units) become anisotropic. Consequently, for higher molecular mass fractions, the supramolecular organization is one-dimensional and consists of more or less separated rows of ordered macromolecules. In this case an increase of the chain length leads to amplification of the intermolecular interactions proceeding via interdigitation of the alkyl substituents of adjacent molecules. Polydispersed fractions show much less ordered organization because of the incompatibility of the supramolecular structures of molecules of different molecular masses. This finding is of crucial importance for the application of polythiophene derivatives in organic and molecular electronics since ordered supramolecular organization constitutes the condition sine qua non of good electrical transport properties.
Scanning tunneling microscopy was used to study the effect of the electron-accepting unit and the alkyl substituent's position on the type and extent of 2D supramolecular organization of penta-ring donor-acceptor-donor (DAD) semiconductors, consisting of either tetrazine or thiadiazole central acceptor ring symmetrically attached to two bithienyl groups. Microscopic observations of monomolecular layers on HOPG of four alkyl derivatives of the studied adsorbates indicate significant differences in their 2D organizations. Ordered monolayers of thiadiazole derivatives are relatively loose and, independent of the position of alkyl substituents, characterized by large intermolecular separation of acceptor units in the adjacent molecules located in the face-to-face configuration. The 2D supramolecular architecture in both derivatives of thiadiazole is very sensitive to the alkyl substituent's position. Significantly different behavior is observed for derivatives of tetrazine (which is a stronger electron acceptor). Stronger intermolecular DA interactions in these adsorbates generate an intermolecular shift in the monolayer, which is a dominant factor determining the 2D structural organization. As a consequence of this molecular arrangement, tetrazine groups (A segments) face thiophene rings (D segments) of the neighboring molecules. Monolayers of tetrazine derivatives are therefore much more densely packed and characterized by similar π-stacking of molecules independently of the position of alkyl substituents. Moreover, a comparative study of 3D supramolecular organization, deduced from the X-ray diffraction patterns, is also presented clearly confirming the polymorphism of the studied adsorbates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.