In this article, the existence of a unique solution in the variational approach of the stochastic evolution equationdriven by a cylindrical Lévy process L is established. The coefficients F and G are assumed to satisfy the usual monotonicity and coercivity conditions. The noise is modelled by a cylindrical Lévy processes which is assumed to belong to a certain subclass of cylindrical Lévy processes and may not have finite moments.
We introduce a stochastic integral with respect to cylindrical Lévy processes with finite p-th weak moment for p ∈ [1, 2]. The space of integrands consists of p-summing operators between Banach spaces of martingale type p. We apply the developed integration theory to establish the existence of a solution for a stochastic evolution equation driven by a cylindrical Lévy process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.