Dickeya solani and Pectobacterium carotovorum subsp. brasiliense are recently established species of bacterial plant pathogens causing black leg and soft rot of many vegetables and ornamental plants. Pseudomonas sp. strain P482 inhibits the growth of these pathogens, a desired trait considering the limited measures to combat these diseases. In this study, we determined the genetic background of the antibacterial activity of P482, and established the phylogenetic position of this strain. Pseudomonas sp. P482 was classified as Pseudomonas donghuensis. Genome mining revealed that the P482 genome does not contain genes determining the synthesis of known antimicrobials. However, the ClusterFinder algorithm, designed to detect atypical or novel classes of secondary metabolite gene clusters, predicted 18 such clusters in the genome. Screening of a Tn5 mutant library yielded an antimicrobial negative transposon mutant. The transposon insertion was located in a gene encoding an HpcH/HpaI aldolase/citrate lyase family protein. This gene is located in a hypothetical cluster predicted by the ClusterFinder, together with the downstream homologs of four nfs genes, that confer production of a non-fluorescent siderophore by P. donghuensis HYST. Site-directed inactivation of the HpcH/HpaI aldolase gene, the adjacent short chain dehydrogenase gene, as well as a homolog of an essential nfs cluster gene, all abolished the antimicrobial activity of the P482, suggesting their involvement in a common biosynthesis pathway. However, none of the mutants showed a decreased siderophore yield, neither was the antimicrobial activity of the wild type P482 compromised by high iron bioavailability. A genomic region comprising the nfs cluster and three upstream genes is involved in the antibacterial activity of P. donghuensis P482 against D. solani and P. carotovorum subsp. brasiliense. The genes studied are unique to the two known P. donghuensis strains. This study illustrates that mining of microbial genomes is a powerful approach for predictingthe presence of novel secondary-metabolite encoding genes especially when coupled with transposon mutagenesis.
Dickeya solani is a Gram-negative bacterium able to cause disease symptoms on a variety of crop and ornamental plants worldwide. Weeds including Solanum dulcamara (bittersweet nightshade) growing near agricultural fields have been reported to support populations of soft rot bacteria in natural settings. However, little is known about the specific interaction of D. solani with such weed plants that may contribute to its success as an agricultural pathogen. The aim of this work was to assess the interaction of D. solani with its crop plant ( Solanum tuberosum ) and an alternative ( S. dulcamara ) host plant. From a collection of 10,000 Tn5 transposon mutants of D. solani IPO2222 carrying an inducible, promotorless gusA reporter gene, 210 were identified that exhibited plant tissue-dependent expression of the gene/operon into which the Tn5 insertion had occurred. Thirteen Tn5 mutants exhibiting the greatest plant tissue induction of such transcriptional units in S. tuberosum or S. dulcamara as measured by qRT-PCR were assessed for plant host colonization, virulence, and ability to macerate plant tissue, as well as phenotypes likely to contribute to the ecological fitness of D. solani , including growth rate, carbon and nitrogen source utilization, motility, chemotaxis toward plant extracts, biofilm formation, growth under anaerobic conditions and quorum sensing. These 13 transcriptional units encode proteins involved in bacterial interactions with plants, with functions linked to cell envelope structure, chemotaxis and carbon metabolism. The selected 13 genes/operons were differentially expressed in, and thus contributed preferentially to D. solani fitness in potato and/or S. dulcamara stem, leaf, and root tissues.
Pseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound (“cluster 17”) and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.
Possibilities to protect potato tubers from rotting caused by Soft Rot Pectobacteriaceae (SRP) under disease favoring conditions were investigated using compatible mixtures of bacterial antagonists and tested with a newly developed stepwise efficacy-based screening protocol. Twenty-two bacterial antagonists were evaluated against a combination of five Pectobacterium and Dickeya strains representing species and subspecies most often associated with potato soft rot in Europe. To enable potential synergistic activity, the antagonists were initially tested against the combination of pathogens in 15 random mixtures containing up to 5 antagonists each. Three mixtures (M2, M4, and M14) out of 15 tested reduced tuber tissue maceration due to soft rot. The individual antagonists derived from M2, M4, and M14 mixtures were tested on potato slices and whole tuber injection assays. These five strains (S. plymuthica strain A294, E. amnigenus strain A167, R. aquatilis strain H145, S. rubidaea strain H440, and S. rubidaea strain H469) were combined to develop a tailored biological control mixture against potato soft rot. The new mixture, designated the Great Five (GF), was tested on seed potato tubers vacuum infiltrated with antagonists and subsequently with the combination of five SRP pathogens. In these experiments, the GF mixture provided stable protection of inoculated potato tubers, reducing soft rot by 46% (P = 0.0016) under high disease pressure conditions. The A294, A167, H145, H440, and H469 antagonists were characterized for features important for viable commercial applications including growth at different temperatures, resistance to antibiotics, and potential toxicity toward Caenorhabditis elegans. The implications for control of soft rot caused by SRP with the use of the GF mixture of antagonists are discussed.
Ochrobactrum spp. are ubiquitous bacteria attracting growing attention as important members of microbiomes of plants and nematodes and as a source of enzymes for biotechnology. Strain Ochrobactrum sp. A44T was isolated from the rhizosphere of a field-grown potato in Gelderland, the Netherlands. The strain can interfere with quorum sensing (QS) of Gram-negative bacteria through inactivation of N-acyl homoserine lactones (AHLs) and protect plant tissue against soft rot pathogens, the virulence of which is governed by QS. Phylogenetic analysis based on 16S rRNA gene alone and concatenation of 16S rRNA gene and MLSA genes (groEL and gyrB) revealed that the closest relatives of A44T are O. grignonense OgA9aT, O. thiophenivorans DSM 7216T, O. pseudogrignonense CCUG 30717T, O. pituitosum CCUG 50899T, and O. rhizosphaerae PR17T. Genomes of all six type strains were sequenced, significantly expanding the possibility of genome-based analyses in Ochrobactrum spp. Average nucleotide identity (ANIb) and genome-to-genome distance (GGDC) values for A44T and the related strains were below the single species thresholds (95% and 70%, respectively), with the highest scores obtained for O. pituitosum CCUG 50899T (87.31%; 35.6%), O. rhizosphaerae PR17T (86.80%; 34.3%), and O. grignonense OgA9aT (86.30%; 33.6%). Distinction of A44T from the related type strains was supported by chemotaxonomic and biochemical analyses. Comparative genomics revealed that the core genome for the newly sequenced strains comprises 2731 genes, constituting 50–66% of each individual genome. Through phenotype-to-genotype study, we found that the non-motile strain O. thiophenivorans DSM 7216T lacks a cluster of genes related to flagella formation. Moreover, we explored the genetic background of distinct urease activity among the strains. Here, we propose to establish a novel species Ochrobactrum quorumnocens, with A44T as the type strain (= LMG 30544T = PCM 2957T).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.