Inflammasomes are protein complexes formed upon encounter of microbial or damage-associated stimuli. The main output of inflammasome assembly is activation of caspase-1, a protease involved in both pro-inflammatory and host-protective responses. Defined bacterial or viral ligands have been identified for the inflammasome-forming receptors AIM2, NLRP1, and NLRC4. The signals activating other inflammasomes, NLRP3, NLRP6, and pyrin, are less well understood. Recent studies implicated several low-molecular-weight compounds traditionally linked to metabolism, not immunity, in modulation of inflammasome signaling. Furthermore, genetic, pharmacological, or pathogen-mediated interference with energy metabolism also affects inflammasome activation. Here we review the findings on how microbial- and host-derived metabolites regulate activation of the NLRP3 and NLRP6 inflammasomes. We discuss the different models of how glycolysis and mitochondrial metabolism control the NLRP3 inflammasome. Finally, we summarize the findings on metabolic control of pyrin and point to open questions to be addressed to broaden our understanding of metabolism-inflammasome interactions.
Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K + efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca 2+ fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation.
Highlights d Platelets license NLRP3 for inflammasome activattion in innate immune cells d Platelets are required for optimal monocyte inflammasome activation d Platelets shape IL-1b in vivo, and platelet counts correlate with IL-1b in plasma d A constitutive, heat-sensitive soluble platelet-factor boost IL-1b in macrophages
A rare coding variant (rs72824905, p.P522R) conferring protection against Alzheimer's disease (AD) was identified in the gene encoding the enzyme phospholipase-C-γ2 (PLCG2) that is highly expressed in microglia. To explore the protective nature of this variant, we employed latent process linear mixed models to examine the association of p.P522R with longitudinal cognitive decline in 3595 MCI patients, and in 10,097 individuals from population-based studies. Furthermore, association with CSF levels of pTau 181 , total tau, and Aβ 1-42 was assessed in 1261 MCI patients. We found that MCI patients who carried the p.P522R variant showed a slower rate of cognitive decline compared to non-carriers and that this effect was mediated by lower pTau 181 levels in CSF. The effect size of the association of p.P522R with the cognitive decline and pTau 181 was similar to that of APOE-ε4, the strongest genetic risk factor for AD. Interestingly, the protective effect of p.P522R was more pronounced in MCI patients with low Aβ 1-42 levels suggesting a role of PLCG2 in the response to amyloid pathology. In line with this hypothesis, we observed no protective effect of the PLCG2 variant on the cognitive decline in population-based studies probably due to the lower prevalence of amyloid positivity in these samples compared to MCI patients. Concerning the potential biological underpinnings, we identified a network of co-expressed proteins connecting PLCG2 to APOE and TREM2 using unsupervised co-regulatory network analysis. The network was highly enriched for the complement cascade Agustin Ruiz and Alfredo Ramirez have contributed equally to this work. The members of the Alzheimer's Disease Neuroimaging Initiative (ADNI) group are listed in Acknowledgements section. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc. edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.