We formulate a criterion for the existence and uniqueness of an invariant measure for a Markov process taking values in a Polish phase space. In addition, weak-$^*$ ergodicity, that is, the weak convergence of the ergodic averages of the laws of the process starting from any initial distribution, is established. The principal assumptions are the existence of a lower bound for the ergodic averages of the transition probability function and its local uniform continuity. The latter is called the e-property. The general result is applied to solutions of some stochastic evolution equations in Hilbert spaces. As an example, we consider an evolution equation whose solution describes the Lagrangian observations of the velocity field in the passive tracer model. The weak-$^*$ mean ergodicity of the corresponding invariant measure is used to derive the law of large numbers for the trajectory of a tracer.Comment: Published in at http://dx.doi.org/10.1214/09-AOP513 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
Randomness is a fundamental concept, with implications from security of modern data systems, to fundamental laws of nature and even the philosophy of science. Randomness is called certified if it describes events that cannot be pre-determined by an external adversary. It is known that weak certified randomness can be amplified to nearly ideal randomness using quantum-mechanical systems. However, so far, it was unclear whether randomness amplification is a realistic task, as the existing proposals either do not tolerate noise or require an unbounded number of different devices. Here we provide an error-tolerant protocol using a finite number of devices for amplifying arbitrary weak randomness into nearly perfect random bits, which are secure against a no-signalling adversary. The correctness of the protocol is assessed by violating a Bell inequality, with the degree of violation determining the noise tolerance threshold. An experimental realization of the protocol is within reach of current technology.
We derive an integral representation for the Jacobi-Poisson kernel valid for all admissible type parameters α, β in the context of Jacobi expansions. This enables us to develop a technique for proving standard estimates in the Jacobi setting that works for all possible α and β. As a consequence, we can prove that several fundamental operators in the harmonic analysis of Jacobi expansions are (vector-valued) Calderón-Zygmund operators in the sense of the associated space of homogeneous type, and hence their mapping properties follow from the general theory. The new JacobiPoisson kernel representation also leads to sharp estimates of this kernel. The paper generalizes methods and results existing in the literature but valid or justified only for a restricted range of α and β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.