Highlights
Pathogen reduction can be an effective method of reducing emerging infectious agents.
Assessment of the effectiveness of pathogen reduction against SARS-CoV-2 is required.
The timing of pathogen reduction should be adapted to the actual plasma demand.
Pathogen reduction performed post thawing may ensure safe plasma for transfusion.
Pathogen reduction techniques can solve the issue of plasma from one-time-only donors.
Background Acute lymphoblastic leukemia (ALL) is a malignant disease of lymphoid progenitor cells. ALL chemotherapy is associated with numerous side effects including neutropenia that is routinely prevented by the administration of growth factors such as granulocyte colony-stimulating factor (G-CSF). To date, the effects of G-CSF treatment on the level of mobilization of different stem and progenitor cells in ALL patients subjected to clinically effective chemotherapy have not been fully elucidated. Therefore, in this study we aimed to assess the effect of administration of G-CSF to ALL patients on mobilization of other than hematopoietic stem cell (HSCs) subsets, namely, very small embryonic-like stem cells (VSELs), endothelial progenitor cells (EPCs), and different monocyte subsets. Methods We used multicolor flow cytometry to quantitate numbers of CD34+ cells, hematopoietic stem cells (HSCs), VSELs, EPCs, and different monocyte subsets in the peripheral blood of ALL patients and normal age-matched blood donors. Results We showed that ALL patients following chemotherapy, when compared to healthy donors, presented with significantly lower numbers of CD34+ cells, HSCs, VSELs, and CD14+ monocytes, but not EPCs. Moreover, we found that G-CSF administration induced effective mobilization of all the abovementioned progenitor and stem cell subsets with high regenerative and proangiogenic potential. Conclusion These findings contribute to better understanding the beneficial clinical effect of G-CSF administration in ALL patients following successful chemotherapy.
The risk of a hemolytic reaction during the transfusion of ABO non-identical PC is determined by the presence of natural anti-A IgM antibodies, the titer of which may increase after infections. The aim of the study was to evaluate the titer of anti-A isohemagglutinins in platelet concentrate (PC) obtained by apheresis from group O donors who experienced SARS-CoV-2 infection, and to compare the titer before and after infection. A retrospective singlecenter analysis of 21 PC donors with a previous COVID-19 history was performed. The results showed neither a statistically important increase in the anti-A IgM antibody titers nor a significant correlation between the anti-A IgM antibody level and anti-SARS-CoV-2S1 antibody titer in the donors with an asymptomatic or mild COVID-19. Further population-based studies on anti-A titers are necessary for a comprehensive assessment of this phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.