The book series "Springer Tracts on Transportation and Traffic" (STTT) publishes current and historical insights and new developments in the fields of Transportation and Traffic research. The intent is to cover all the technical contents, applications, and multidisciplinary aspects of Transportation and Traffic, as well as the methodologies behind them. The objective of the book series is to publish monographs, handbooks, selected contributions from specialized conferences and workshops, and textbooks, rapidly and informally but with a high quality. The STTT book series is intended to cover both the state-of-the-art and recent developments, hence leading to deeper insight and understanding in Transportation and Traffic Engineering. The series provides valuable references for researchers, engineering practitioners, graduate students and communicates new findings to a large interdisciplinary audience.More information about this series at
To cite this version:Tone Lerher, Matjaz Sraml, Iztok Potrc, Tomaz Tollazzi. Travel time models for double-deep automated storage and retrieval systems. International Journal of Production Research, Taylor & Francis, 2010, 48 (11) Abstract:In this paper new analytical travel time models for the computation of cycle times for unit-load double-deep automated storage and retrieval systems (in continuation double-deep AS/RS) are presented. The proposed models consider the real operating characteristics of the storage and retrieval machine and the condition of rearranging blocking loads to the nearest free storage location during the retrieval process. With the assumption of the uniform distributed storage rack positions and the probability theory, the expressions of the single and modified dual command cycle have been determined. The proposed models enable the calculation of the mean cycle time for single and dual command cycles, from which the performance of the double-deep AS/RS can be evaluated. A simulation model of the selected double-deep AS/RS has been developed to compare the performances of the proposed analytical travel time models. The numerical analyses show that with regard to the examined type of double-deep AS/RS with a different fill-grade factor, the results of proposed analytical travel time models correlate with the results of simulation models of double-deep AS/RS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.