The direct conversion of aliphatic carboxylic acids to their dehomologated carbonyl analogues has been accomplished through photocatalytic decarboxylative oxygenation. This transformation is applicable to an array of carboxylic acid motifs, producing ketones, aldehydes, and amides in excellent yields. Preliminary results demonstrate that this methodology is further amenable to aldehyde substrates via in situ oxidation to the corresponding acid and subsequent decarboxylative oxygenation. We have exploited this strategy for the sequential oxidative dehomologation of linear aliphatic chains.
We describe herein a two-step process
for the conversion of serine
to a wide array of optically pure unnatural amino acids. This method
utilizes a photocatalytic cross-electrophile coupling between a bromoalkyl
intermediate and a diverse set of aryl halides to produce artificial
analogues of phenylalanine, tryptophan, and histidine. The reaction
is tolerant of a broad range of functionalities and can be leveraged
toward the scalable synthesis of valuable pharmaceutical scaffolds
via flow technology.
Endophytic fungi are an important class of microorganisms, able to interact with a host plant via a mutualistic mechanism without visible symptoms of the fungal colonization. The synergy between endophytic fungi and their host plant can promote morphological, physiological and biochemical changes through the expression of bioactive metabolites. This work aims to correlate metabolic changes in the Combretum lanceolatum plant metabolome with its endophytic fungi Diaporthe phaseolorum (Dp) and Trichoderma spirale (Ts), and to discover corresponding metabolite‐biomarkers, with the principal focus being on its primary metabolism. The 1H‐NMR metabolomic analysis of qualitative and quantitative changes was performed through multivariate statistical analysis and the identification of primary metabolites was achieved on the Madison Metabolomics Consortium Database. The presence of Dp significantly impacted the plant's metabolic pathways, improving the biosynthesis of primary metabolites such as threonine, malic acid and N‐acetyl‐mannosamine, which are precursors of special metabolites involved in plant self‐defence. This work represents a valuable contribution to advanced studies on the metabolic profiles of the interaction of plants with endophytes.
We report the evaluation of chalcone derivatives as photosystem II (PSII) and plant growth inhibitors. Chalcone derivatives were evaluated as PSII inhibitors through Chl a fluorescence measurement. (E)-Chalcone (6a) and (E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (6j) showed the best results, reducing the performance index on absorption basis parameter (PI abs ) by 70 %. Additionally, the decrease of TR 0 /RC and ET 0 / RC parameters indicates that the chalcone derivatives limited the number of active PSII reaction centers and the amount of trapped energy within them. Compounds 6a and 6j both act as post-emergent herbicides at 50 μM, reducing the root biomass of the Ipomoea grandifolia weed by 72 % and 83 %, respectively, corroborating the fluorescence results. The selectivity against weeds as compared to valuable crops by compounds 6a and 6j were evaluated employing Zea mays and Phaseolus vulgaris plants. In these, our newly synthesized compounds showed no effects on biomass accumulation of roots and aerial parts when compared to the control, providing valuable evidence for the role of these compounds as selective inhibitors of the growth of undesired weeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.