Strong light scattering in tissues and blood reduces the usability of many optical techniques. By reducing scattering, optical clearing enables deeper light penetration and improves resolution in several optical imaging applications. We demonstrate the usage of optical tweezers and elastic light scattering to study optical clearing [one of the major mechanisms-matching of refractive indices (RIs)] at the single particle and cell level. We used polystyrene spheres and human red blood cells (RBCs) as samples and glycerol or glucose water solutions as clearing agents. Optical tweezers kept single microspheres and RBCs in place during the measurement of light scattering patterns. The results show that optical clearing reduces the scattering cross section and increases g. Glucose also decreased light scattering from a RBC. Optical clearing affected the anisotropy factor g of 23.25-μm polystyrene spheres, increasing it by 0.5% for an RI change of 2.2% (20% glycerol) and 0.3% for an RI change of 1.1% (13% glucose).
Optical tweezers have been used in biophysical studies for over twenty years. Typical application areas are force measurements of subcellular structures and cell biomechanics. Optical tweezers can also be used to manipulate the orientation of objects. Moreover, using various beam shapes, optical tweezers allow measuring light scattering from single and multiple objects by keeping particles and cells in place during the measurement. At single cell level, light scattering yields important information about the object being studied, including its size, shape and refractive index. Also dependent scattering can be studied. In this paper, we review experimental work conducted in this area by our group and show new results relating to optical clearing phenomena at single microparticle level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.