The increased production of biodiesel as an alternative fuel involves the simultaneous growth in production of crude glycerol as its main by-product. Therefore, the feasibility and sustainability of biodiesel production requires the effective utilization of crude glycerol. This review describes various uses of crude glycerol as a potential green solvent for chemical reactions, a starting raw material for chemical and biochemical conversions into value-added chemicals, a substrate or co-substrate in microbial fermentations for synthesis of valuable chemicals and production of biogas and biohydrogen as well as a feedstuff for animal feed. A special attention is paid to various uses of crude glycerol in biodiesel production. [Projekat Ministarstva nauke Republike Srbije, br. III 45001]
In this paper a lumped element model of RF MEMS capacitive switches which is scalable with the lateral dimensions of the bridge is proposed. The dependence of the elements of the model on the bridge dimensions is introduced by using one or more artificial neural networks to model the relationship between the bridge dimensions and the inductive and resistive elements of the lumped element model. The achieved results show that the developed models have a good accuracy over the whole considered range of the bridge dimension values.
The increased growth of the applications of RF MEMS switches in modern communication systems has created an increased need for their accurate and efficient models. Artificial neural networks have appeared as a fast and efficient modelling tool providing similar accuracy as standard commercial simulation packages. This paper gives an overview of the applications of artificial neural networks in modelling of RF MEMS switches, in particular of the capacitive shunt switches, proposed by the authors of the paper. Models for the most important switch characteristics in electrical and mechanical domains are considered, as well as the inverse models aimed to determine the switch bridge dimensions for specified requirements for the switch characteristics.
In the present work, four derivatives of salicylaldehyde (salicylaldehyde-hydrazone, phenylhydrazone, semicarbazone and thiosemicarbazone) were synthesized using both conventional (95% ethanol) and green (crude glycerol from biodiesel production) solvents. The obtained compounds were identified by elemental microanalysis, as well as FTIR, UV/Vis and 1H-NMR spectroscopic methods. Yields of 93?98% of the compounds in crude glycerol were achieved within 10?25 min. The derivatives of salicylaldehyde and crude glycerol were used as a nitrogen and carbon source, respectively, in the medium for antibiotic (hexaene H-85 and azalomycine B) production by Streptomyces hygroscopicus CH-7. The highest concentrations of hexaene H-85 and azalomycine B were achieved in the medium containing salicylaldehyde-thiosemicarbazone (198 and 69 ?g/cm3, respectively). Derivatives of salicylaldehyde also impacted the strain morphology. In the media with salicylaldehyde- phenylhydrazone and salicylaldehyde-thiosemicarbazone, S. hygroscopicus CH-7 grew like large dispersive pellets with long twisted filaments that produced the highest yield of the antibiotics. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45001]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.