A hexanucleotide repeat expansion represents the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which the expansion cause neurodegeneration are poorly understood. We report elevated levels of DNA/RNA hybrids (R-loops) and double-strand breaks (DSBs) in rodent neurons, human cells, and in C9orf72-ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signalling and accumulation of protein-linked DNA breaks. We further reveal that defective ATM-mediated DNA repair is a consequence of p62 accumulation, which impairs H2A ubiquitylation and perturbs ATM signalling. Adeno-associated virus-mediated expression of C9orf72-related RNA and dipeptide repeats in the murine central nervous system causes elevated DSBs, ATM defects, and triggers neurodegeneration. These findings identify R-Loops, DSBs, and defective ATM-mediated repair as pathological consequences of C9orf72 expansions, and suggest that C9orf72-linked neurodegeneration is driven, at least in part, by genomic instability.
Histone acetyltransferase and histone deacetylase are enzymes responsible for histone acetylation and deacetylation, respectively, in which the histones are acetylated and deacetylated on lysine residues in the N-terminal tail and on the surface of the nucleosome core. These processes are considered the most important epigenetic mechanisms for remodeling the chromatin structure and controlling the gene expression. Histone acetylation is associated with gene activation. Sodium phenylbutyrate is a histone deacetylase inhibitor that has been approved for treatement of urea cycle disorders and is under investigation in cancer, hemoglobinopathies, motor neuron diseases, and cystic fibrosis clinical trials. Due to its characteristics, not only of histone deacetylase inhibitor, but also of ammonia sink and chemical chaperone, the interest towards this molecule is growing worldwide. This review aims to update the current literature, involving the use of sodium phenylbutyrate in experimental studies and clinical trials.
Vaginal atrophy occurring during menopause is closely related to the dramatic decrease in ovarian estrogens due to the loss of follicular activity. Particularly, significant changes occur in the structure of the vaginal mucosa, with consequent impairment of many physiological functions. In this study, carried out on bioptic vaginal mucosa samples from postmenopausal, nonestrogenized women, we present microscopic and ultrastructural modifications of vaginal mucosa following fractional carbon dioxide (CO2) laser treatment. We observed the restoration of the vaginal thick squamous stratified epithelium with a significant storage of glycogen in the epithelial cells and a high degree of glycogen-rich shedding cells at the epithelial surface. Moreover, in the connective tissue constituting the lamina propria, active fibroblasts synthesized new components of the extracellular matrix including collagen and ground substance (extrafibrillar matrix) molecules. Differently from atrophic mucosa, newly-formed papillae of connective tissue indented in the epithelium and typical blood capillaries penetrating inside the papillae, were also observed. Our morphological findings support the effectiveness of fractional CO2 laser application for the restoration of vaginal mucosa structure and related physiological trophism. These findings clearly coupled with striking clinical relief from symptoms suffered by the patients before treatment.
The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword ‘Lactobacillus’. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects.
Further future clinical trials, involving large numbers of patients, will be mandatory to achieve definite evidence of the preventive and curative role of probiotics in medical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.