Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA–linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)–activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission.
SUMMARY The molecular mechanisms underlying the axon arborization of mammalian neurons are poorly understood but are critical for the establishment of functional neural circuits. We identified a pathway defined by two kinases, LKB1 and NUAK1, required for cortical axon branching in vivo. Conditional deletion of LKB1 after axon specification or knockdown of NUAK1 drastically reduced axon branching in vivo whereas their overexpression was sufficient to increase axon branching. The LKB1-NUAK1 pathway controls mitochondria immobilization in axons. Using manipulation of Syntaphilin, a protein necessary and sufficient to arrest mitochondrial transport specifically in the axon, we demonstrate that the LKB1-NUAK1 kinase pathway regulates axon branching by promoting mitochondria immobilization. Finally, we show that LKB1 and NUAK1 are necessary and sufficient to immobilize mitochondria specifically at nascent presynaptic sites. Our results unravel a link between presynaptic mitochondrial capture and axon branching.
The distinct electrical properties of axonal and dendritic membranes are largely a result of specific transport of vesicle-bound membrane proteins to each compartment. How this specificity arises is unclear because kinesin motors that transport vesicles cannot autonomously distinguish dendritically projecting microtubules from those projecting axonally. We hypothesized that interaction with a second motor might enable vesicles containing dendritic proteins to preferentially associate with dendritically projecting microtubules and avoid those that project to the axon. Here we show that in rat cortical neurons, localization of several distinct transmembrane proteins to dendrites is dependent on specific myosin motors and an intact actin network. Moreover, fusion with a myosin-binding domain from Melanophilin targeted Channelrhodopsin-2 specifically to the somatodendritic compartment of neurons in mice in vivo. Together, our results suggest that dendritic transmembrane proteins direct the vesicles in which they are transported to avoid the axonal compartment through interaction with myosin motors.The differential trafficking of proteins synthesized in the secretory pathway allows the establishment and maintenance of membrane domains with distinct functional and morphological properties at opposite ends of polarized cells 1 . A first step in this process has been well defined in epithelial cells and involves the sorting of proteins at the trans-Golgi membrane into vesicles bound for either the apical or basolateral domain through interaction with clathrin adaptor proteins 2 . In neurons proteins bound for either the dendritic or axonal domains are also loaded into specific vesicles 3 . Moreover, this sorting step is likely to proceed by a similar mechanism in the two cell types, as AP4β, a constituent of a clathrin adaptor complex, is necessary for dendritic targeting of AMPA receptors 4 .Subsequent steps in polarized targeting of neuronal proteins are much less well defined. However, their properties can be inferred from the observations that vesicles containing dendritic proteins traffic specifically to dendrites, avoiding axonal processes 3 , and that kinesin motors, which interact with microtubules, are responsible for movement of vesicles within dendrites 5 . Taken together, these results suggest that after sorting at the Golgi membrane, vesicles carrying dendritic proteins preferentially interact with microtubules that project to NIH Public Access RESULTS Myosin Va is necessary for dendritic targetingTo investigate possible roles of myosin in polarized targeting, we examined the contributions of Myosins Va and Vb to dendritic targeting of the AMPA receptor GluR1, to which both myosins bind 11,15 . We used dissociated cultures of cortical neurons taken from embryonic day 18 rat embryos and transfected between 12 and 18 d in vitro with plasmid constructs encoding tagged transmembrane proteins. When transfected into dissociated rat cortical neurons, GluR1 tagged with green fluorescent protein (GFP) (Glu...
Neurons display extreme degrees of polarization, including compartment-specific organelle morphology. In cortical, long-range projecting, pyramidal neurons (PNs), dendritic mitochondria are long and tubular whereas axonal mitochondria display uniformly short length. Here we explored the functional significance of maintaining small mitochondria for axonal development in vitro and in vivo. We report that the Drp1 ‘receptor’ Mitochondrial fission factor (MFF) is required for determining the size of mitochondria entering the axon and then for maintenance of their size along the distal portions of the axon without affecting their trafficking properties, presynaptic capture, membrane potential or ability to generate ATP. Strikingly, this increase in presynaptic mitochondrial size upon MFF downregulation augments their capacity for Ca2+ ([Ca2+]m) uptake during neurotransmission, leading to reduced presynaptic [Ca2+]c accumulation, decreased presynaptic release and terminal axon branching. Our results uncover a novel mechanism controlling neurotransmitter release and axon branching through fission-dependent regulation of presynaptic mitochondrial size.
Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.