Many people share their activities with others through online communities. These shared activities have an impact on other users' activities. For example, users are likely to become interested in items that are adopted (e.g. liked, bought and shared) by their friends. In this paper, we propose a probabilistic model for discovering latent influence from sequences of item adoption events. An inhomogeneous Poisson process is used for modeling a sequence, in which adoption by a user triggers the subsequent adoption of the same item by other users. For modeling adoption of multiple items, we employ multiple inhomogeneous Poisson processes, which share parameters, such as influence for each user and relations between users. The proposed model can be used for finding influential users, discovering relations between users and predicting item popularity in the future. We present an efficient Bayesian inference procedure of the proposed model based on the stochastic EM algorithm. The effectiveness of the proposed model is demonstrated by using real data sets in a social bookmark sharing service.
We propose an online topic model for sequentially analyzing the time evolution of topics in document collections. Topics naturally evolve with multiple timescales. For example, some words may be used consistently over one hundred years, while other words emerge and disappear over periods of a few days. Thus, in the proposed model, current topicspecific distributions over words are assumed to be generated based on the multiscale word distributions of the previous epoch. Considering both the long-timescale dependency as well as the short-timescale dependency yields a more robust model. We derive efficient online inference procedures based on a stochastic EM algorithm, in which the model is sequentially updated using newly obtained data; this means that past data are not required to make the inference. We demonstrate the effectiveness of the proposed method in terms of predictive performance and computational efficiency by examining collections of real documents with timestamps.
We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.