The Bio-C Sealer is a recently developed high-plasticity, calcium-silicate-based, ready-to-use material. In the present study, chemical elements of the materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The biocompatibility of the Bio-C Sealer was investigated using cytotoxicity tests and histological responses in the roots of dogs’ teeth. XRD, SEM, and FTIR produced hydrated calcium silicate in the presence of water molecules. In addition, FTIR showed the formation of calcium hydroxide and polyethylene glycol, a dispersing agent. The 1:4 dilutions of Bio-C Sealer presented weaker cytotoxicity than the Calcipex II in an in vitro system using the V-79 cell line. After 90 d, the periradicular tissue response of beagle dog roots was histologically evaluated. Absence of periradicular inflammation was reported in 17 of the 18 roots assessed with the Bio-C Sealer, whereas mature vertical periodontal ligament fibers were observed in the apical root ends filled with the Bio-C Sealer. Based on these results and previous investigations, the Bio-C Sealer is recommended as an effective root-end filling material. These results are relevant for clinicians considering the use of Bio-C Sealer for treating their patients.
Autogenous bone grafting involves a second surgery and is limited by the availability of collectable bone. Coral products commercially available as bone grafts are composed of corals in their natural form. Cultured corals are recommended as a substitute to overcome the threat of extinction of natural corals. The purpose of this study was to investigate the potential of cultured coral scaffolds for periodontal tissue regeneration in class II furcation defects in dogs. The cultured coral used for this study was characterized using scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. Twelve mandibular premolar teeth from two female beagle dogs were used. Furcation defects of three left mandibular premolar teeth of each dog received the cultured coral. A control group consisting of the right mandibular premolar teeth from each dog received no implant material within the furcation defects. The dogs were then sacrificed 8 weeks post-surgery, and healing was evaluated histologically and radiologically using micro-computed tomography analysis. SEM micrographs showed a tri-dimensional ceramic structure with pore size ranging 50-250 mm. The surface of the cultured coral particles was covered with numerous rough, porous processes. XRD and FTIR results showed that the cultured coral exhibited both aragonite and calcite phases, referred to as dimorphism. The cultured coral particles implanted into the defects were completely resorbed and replaced by bone with either a Haversian structure or without any inflammatory reaction. A well-organized periodontal ligament bridging the new bone and cementum was regenerated to the top of the furcation space. Histopathological evaluation suggests that cultured coral scaffolds have the potential to regenerate periodontal tissue in class II furcation defects in dogs.
In basal squamous cells, plectin-1 interacts with intermediate filaments, whereas trichohyalin, which is distributed primarily in the medulla and inner root sheath cells of human hair follicles, plays a role in strengthening cells during keratinization. Although both cytoskeletal proteins occur in trace amounts in human tongue epithelial cells, there are minimal data on their expression in human tongue primary cancer cells. We therefore investigated the expression of plectin-1 and trichohyalin in human tongue epithelial cell line (DOK) and tongue cancer cell line (BICR31) using western blotting and FITC-labeled immunocytochemistry techniques. DOK and BICR31 cells were cultivated to subconfluence in Dulbecco's Modified Eagle's Medium containing 0.4 µg/ml of hydrocortisone and 10% fetal bovine serum, and the levels of trichohyalin and plectin-1 were determined by western blot analysis and immunocytochemical staining. Trichohyalin expression was clearly observed, with no differences between DOK and BICR31 cells. Although DOK cells expressed trace levels of plectin-1, obvious plectin-1 bands were detected in western blot analyses of BICR31 cells. Immunocytochemical staining revealed that trichohyalin and plectin-1 localize in the cytoplasm. Trichohyalin was diffusely distributed in both cell lines, and colocalization of trichohyalin and cytokeratin 1/10 was observed in almost all BICR31 cells. There were no correlations between western blot and immunocytochemical data for trichohyalin. Conversely, correlations in immunochemical reactions for plectin-1 were observed. Most DOK cells showed no localization of plectin-1, but strong reactions were detected in the cytoplasm of BICR31 cells. These results indicate that trichohyalin is expressed by cancerous tongue epithelial cells during various stages of malignancy and that plectin-1 provides an index of malignancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.