The mouse insulin-like growth factor II receptor (Igf2r) gene and its antisense transcript Air are reciprocally imprinted in most tissues, but in the brain, Igf2r is biallelically expressed despite the imprinted Air expression. To investigate the molecular mechanisms of such brain-specific relaxation of Igf2r imprinting, we analyzed its expression and epigenetic modifications in neurons, glial cells and fibroblasts by the use of primary cortical cell cultures. In glial cells and fibroblasts, Igf2r was maternally expressed and Air was paternally expressed, whereas in the primary cultured neurons, Igf2r was biallelically expressed and Air was not expressed. In the differentially methylated region 2 (DMR2), which includes the Air promoter, allele-specific DNA methylation, differential H3 and H4 acetylation and H3K4 and K9 di-methylation were maintained in each cultured cell type. In DMR1, which includes the Igf2r promoter, maternal-allele-specific DNA hypomethylation, histones H3 and H4 acetylation and H3K4 di-methylation were apparent in glial cells and fibroblasts. However, in neurons, biallelic DNA hypomethylation and biallelic histones H3 and H4 acetylation and H3K4 di-methylation were detected. These data indicate that lack of reciprocal imprinting of Igf2r and Air in the brain results from neuron-specific relaxation of Igf2r imprinting associated with neuron-specific histone modifications in DMR1 and lack of Air expression. Our observation of biallelic Igf2r expression with no Air expression in neurons sheds light on the function of Air as a critical effector in Igf2r silencing and suggests that neuron-specific epigenetic modifications related to the lineage determination of neural stem cells play a critical role in controlling imprinting by antisense transcripts.
Mouse Grb10 is a tissue-specific imprinted gene with promoter-specific expression. In most tissues, Grb10 is expressed exclusively from the major-type promoter of the maternal allele, whereas in the brain, it is expressed predominantly from the brain type promoter of the paternal allele. Such reciprocally imprinted expression in the brain and other tissues is thought to be regulated by DNA methylation and the Polycomb group (PcG) protein Eed. To investigate how DNA methylation and chromatin remodeling by PcG proteins coordinate tissue-specific imprinting of Grb10, we analyzed epigenetic modifications associated with Grb10 expression in cultured brain cells. Reverse transcriptase PCR analysis revealed that the imprinted paternal expression of Grb10 in the brain implied neuron-specific and developmental stage-specific expression from the paternal brain type promoter, whereas in glial cells and fibroblasts, Grb10 was reciprocally expressed from the maternal major-type promoter. The cell-specific imprinted expression was not directly related to allele-specific DNA methylation in the promoters because the major-type promoter remained biallelically hypomethylated regardless of its activity, whereas gametic DNA methylation in the brain type promoter was maintained during differentiation. Histone modification analysis showed that allelic methylation of histone H3 lysine 4 and H3 lysine 9 were associated with gametic DNA methylation in the brain type promoter, whereas that of H3 lysine 27 regulated by the Eed PcG complex was detected in the paternal major-type promoter, corresponding to its allele-specific silencing. Here, we propose a molecular model that gametic DNA methylation and chromatin remodeling by PcG proteins during cell differentiation cause tissue-specific imprinting in embryonic tissues.
This is the first report on mutations of the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase gene (GNE) in Nonaka myopathy or distal myopathy with rimmed vacuoles (OMIM 605820), an autosomal recessive neuromuscular disorder. Sequence and haplotype analyses of GNE in two siblings with Nonaka myopathy from a Japanese family revealed that both patients were compound heterozygotes for a CAET transition (A460V) in exon 8 and a GAEC transition (V572L) in exon 10. Their parents and a normal elder brother were all carriers for one or the other of the mutations. GNE mutations are known to cause two other disorders: sialuria (OMIM #269921) and autosomal recessive inclusion body myopathy (IBM2, OMIM #600737). Mutations associated with sialuria are located in the epimerase domain, and those associated with IBM2 are in the epimerase or the kinase domain or both, whereas the mutations we observed in the Nonaka myopathy patients were located in the sugar kinase domain of the gene. Thus, Nonaka myopathy is the third disease known to be caused by GNE mutations.
By a search for novel human imprinted genes in the vicinity of the imprinted gene MEST, at chromosome 7q32, we identified the carboxypeptidase A4 gene (CPA4) in a gene cluster of the carboxypeptidase family, 200 kb centromeric to MEST. Because CPA4 was originally identified as a protein induced in a prostate cancer cell line (PC-3) by histone deacetylase inhibitors, and was located at the putative prostate cancer-aggressiveness locus at 7q32, we investigated its imprinting status in fetal tissues and in adult benign hypertrophic prostate (BPH). RT-PCR using four intragenic polymorphisms as markers showed that CPA4 was expressed preferentially from the maternal allele in the fetal heart, lung, liver, intestine, kidney, adrenal gland, and spleen, but not in the fetal brain. It was also preferentially expressed in the BPH. These findings support that CPA4 is imprinted and may become a strong candidate gene for prostate cancer-aggressiveness. As a Silver-Russell syndrome (SRS) locus has been proposed to be located to a region near MEST and to be involved in imprinting, CPA4 would have been a candidate gene for SRS. However, analysis of ten SRS patients revealed no mutations in CPA4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.