Computations of Mie scattering by marine particles indicate that the ratios between the backward scattering coefficient and the scatterance at 120 degrees are ~6.9 +/- 0.4, 7.2 +/- 0.6, and 7.1 +/- 0.5 for Junge, normal and log-normal particle size distributions, respectively. In situ observations of the scattering confirm this result.
We present a novel optical approach to measure the volume scattering function (VSF) by image detection. The instrument design, based upon a combination of two reflectors, uses a unique measurement principle and allows the rapid simultaneous determination of scattering at a wide range of angles. The advantages of the newly developed scattering meter are that: 1) it can determine the scattering function from 8° to 172° at 1° intervals without changing the sensitivity of the detector, without moving any optical parts, and can do so within a few seconds, 2) the unique optical design facilitates determination of the spectral VSF over the full visible spectrum, i.e. it can obtain the VSF at a specific wavelength with an optional wavelength-resolution. Measurements under controlled conditions for the assessment of the instrument agreed well with theoretically predicted scattering functions. Measurements with cultured phytoplankton of different species revealed a significant variety of the VSF together with spectral variation. The observed results will stimulate and improve radiative transfer and/or two-flow models of light in the ocean, which is an important role for ocean color remote sensing algorithm development, particularly for coastal regions.
We describe a method for quickly and easily measuring the size of small particles in suspensions. This method uses a self-mixing laser Doppler measurement with a laser-diode-pumped, thin-slice LiNdP(4)O(12) laser with extremely high optical sensitivity. The average size of the particles in Brownian motion is determined by a Lorentz fitting of the measured power spectrum of the modulated self-mixing laser light resulting from the motion. The dependence of the measured power spectra on particle size and concentration was quantitatively identified from the results of a systematic investigation of small polystyrene latex particles with different diameters and concentrations. The sizes and ratios of particles with different diameters mixed in water were accurately measured. An application of this self-mixing laser method for estimation of the average size of plankton in seawater showed that it is a practical method for characterizing biological species.
We present an analysis of the shoulder-shaped power spectrum observed in the modulated laser output due to feedback light scattered from dynamic changes in self-mobile phytoplankton with flagella in seawater performed using a self-mixing laser Doppler vibrometry system. The power spectrum occasionally has shoulder-shaped broad frequency components superimposed on a Lorentz-type spectrum. This reflects the translational motion of phytoplankton moving across the beam-focus area. The velocity of phytoplankton in the focus area can be obtained by applying a curve fitting procedure to the power spectrum. Moreover, the average velocity and the velocity distribution of phytoplankton can be determined from curve fitting of the long-term power spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.