Four distinct subsets of invariant natural killer T (NKT) cells are shown to differentiate in the thymus, then migrate to peripheral tissues where they retain their phenotypic and functional characteristics.
Foxp3 controls the development and function of regulatory T (Treg) cells, but it remains elusive how Foxp3 functions in vivo. Here, we established mouse models harboring three unique missense Foxp3 mutations that were identified in patients with the autoimmune disease IPEX. The I363V and R397W mutations were loss-of-function mutations, causing multi-organ inflammation by globally compromising Treg cell physiology. By contrast, the A384T mutation induced a distinctive tissue-restricted inflammation by specifically impairing the ability of Treg cells to compete with pathogenic T cells in certain non-lymphoid tissues. Mechanistically, repressed BATF expression contributed to these A384T effects. At the molecular level, the A384T mutation altered Foxp3 interactions with its specific target genes including Batf by broadening its DNA-binding specificity. Our findings identify BATF as a critical regulator of tissue Treg cells and suggest that sequence-specific perturbations of Foxp3-DNA interactions can influence specific facets of Treg cell physiology and the immunopathologies they regulate.
The immune system is influenced by the vital zinc (Zn) status, and Zn deficiency triggers lymphopenia; however, the mechanisms underlying Zn-mediated lymphocyte maintenance remain elusive. Here we investigated ZIP10, a Zn transporter expressed in the early B-cell developmental process. Genetic ablation of Zip10 in early B-cell stages resulted in significant reductions in B-cell populations, and the inducible deletion of Zip10 in pro-B cells increased the caspase activity in parallel with a decrease in intracellular Zn levels. Similarly, the depletion of intracellular Zn by a chemical chelator resulted in spontaneous caspase activation leading to cell death. Collectively, these findings indicated that ZIP10-mediated Zn homeostasis is essential for early B-cell survival. Moreover, we found that ZIP10 expression was regulated by JAK-STAT pathways, and its expression was correlated with STAT activation in human B-cell lymphoma, indicating that the JAK-STAT-ZIP10-Zn signaling axis influences the B-cell homeostasis. Our results establish a role of ZIP10 in cell survival during early B-cell development, and underscore the importance of Zn homeostasis in immune system maintenance.B-lymphocyte | apoptosis | cytokine | bone marrow | zinc-signaling axis
The humoral immune response, also called the antibody-mediated immune response, is one of the main adaptive immune systems. The essential micronutrient zinc (Zn) is known to modulate adaptive immune responses, and dysregulated Zn homeostasis leads to immunodeficiency. However, the molecular mechanisms underlying this Zn-mediated modulation are largely unknown. Here, we show that the Zn transporter SLC39A10/ZIP10 plays an important role in B-cell antigen receptor (BCR) signal transduction. Zip10-deficiency in mature B cells attenuated both T-cell-dependent and -independent immune responses in vivo. The Zip10-deficient mature B cells proliferated poorly in response to BCR cross-linking, as a result of dysregulated BCR signaling. The perturbed signaling was found to be triggered by a reduction in CD45R phosphatase activity and consequent hyperactivation of LYN, an essential protein kinase in BCR signaling. Our data suggest that ZIP10 functions as a positive regulator of CD45R to modulate the BCR signal strength, thereby setting a threshold for BCR signaling in humoral immune responses.B lymphocyte | acquired immunity | germinal center | antigen-presenting cell | zinc signaling
CCL19 and CCL21 are thought to be critical for experimental autoimmune encephalomyelitis (EAE) induction, but their precise role is unknown. We examined the role of these chemokines in inducing EAE. C57BL/6 mice lacking expression of these chemokines (plt/plt mice) or their receptor CCR7 were resistant to EAE induced with myelin oligodendrocyte glycoprotein peptide 35–55 (MOG35–55) and pertussis toxin. However, passive transfer of pathogenic T cells from wild-type mice induced EAE in plt/plt mice, suggesting a defect independent of the role of CCR7 ligands in the migration of immune cells. Examination of draining lymph node (DLN) cells from MOG35–55-immunized plt/plt mice found decreased IL-23 and IL-12 production by plt/plt dendritic cells (DCs) and a concomitant defect in Th17 cell and Th1 cell generation. In contrast, production of the Th17 lineage commitment factors IL-6 and TGF-β were unaffected by loss of CCR7 ligands. The adoptive transfer of in vitro-generated Th17 cells from DLN cells of MOG35–55-immunized plt/plt mice developed EAE in wild-type recipient mice, whereas that of Th1 cells did not. Pathogenic Th17 cell generation was restored in plt/plt DLNs with the addition of exogenous IL-23 or CCL19/CCL21 and could be reversed by inclusion of anti-IL-23 mAb in cultures. Exogenous CCL19/CCL21 induced IL-23p19 expression and IL-23 production by plt/plt or wild-type DCs. Therefore, CCR7 ligands have a novel function in stimulating DCs to produce IL-23 and are important in the IL-23-dependent generation of pathogenic Th17 cells in EAE induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.