Hyperpolarization is a highly promising technique for improving the sensitivity of magnetic resonance chemical probes. Here we report [15N, D9]trimethylphenylammonium as a platform for designing a variety of hyperpolarized magnetic resonance chemical probes. The platform structure shows a remarkably long 15N spin–lattice relaxation value (816 s, 14.1 T) for retaining its hyperpolarized spin state. The extended lifetime enables the detection of the hyperpolarized 15N signal of the platform for several tens of minutes and thus overcomes the intrinsic short analysis time of hyperpolarized probes. Versatility of the platform is demonstrated by applying it to three types of hyperpolarized chemical probes: one each for sensing calcium ions, reactive oxygen species (hydrogen peroxide) and enzyme activity (carboxyl esterase). All of the designed probes achieve high sensitivity with rapid reactions and chemical shift changes, which are sufficient to allow sensitive and real-time monitoring of target molecules by 15N magnetic resonance.
The LacZ gene, which encodes Escherichia coli β-galactosidase, is widely used as a marker for cells with targeted gene expression or disruption. However, it has been difficult to detect lacZ-positive cells in living organisms or tissues at single-cell resolution, limiting the utility of existing lacZ reporters. Herein we present a newly developed fluorogenic β-galactosidase substrate suitable for labeling live cells in culture, as well as in living tissues. This precisely functionalized fluorescent probe exhibited dramatic activation of fluorescence upon reaction with the enzyme, remained inside cells by anchoring itself to intracellular proteins, and provided single-cell resolution. Neurons labeled with this probe preserved spontaneous firing, which was enhanced by application of ligands of receptors expressed in the cells, suggesting that this probe would be applicable to investigate functions of targeted cells in living tissues and organisms.
Two kinds of organosilica nanoparticles (NPs) that were fabricated from thiol-containing precursors, (3-mercaptopropyl)trimethoxysilane (MPMS) and (3-mercaptopropyl)methyldimethoxysilane (MPDMS), are potential delivery vehicles of anticancer drugs. MPMS can form three siloxane bonds, but MPDMS forms two siloxane bonds as the maximum limit. Hence, disulfide bonds can be involved in the three-dimensional morphology of MPDMS NPs. In addition, NPs containing disulfide bonds are potentially degraded by a reduced form of glutathione (GSH). To examine reactions between the organosilica NPs and GSH, the NPs were incubated in 10 mM GSH aqueous solution at 37 °C for 7 d and the products were analyzed using field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and soft X-ray photoelectron spectroscopy (XPS). The Raman spectra showed the presence of disulfide bonds in the MPDMS NPs and the absence of disulfide bonds in MPMS NPs. The results of XPS measurements suggested that the disulfide bonds in the outer layer of MPDMS NPs were reduced to thiol groups. FE-SEM observations of MPDMS NPs detected changes in NP morphology after the GSH incubation. These results support the idea that MPDMS NPs contain disulfide bonds and are degradable by GSH. Therefore, MPDMS NPs possess a biodegradable feature that is advantageous for clinical translation, that is, nanomedicine.
The LacZ gene,w hiche ncodes Escherichia coli bgalactosidase,iswidely used as amarker for cells with targeted gene expression or disruption. However,ithas been difficult to detect lacZ-positive cells in living organisms or tissues at single-cell resolution, limiting the utility of existing lacZ reporters.H erein we present an ewly developed fluorogenic b-galactosidase substrate suitable for labeling live cells in culture,aswell as in living tissues.This precisely functionalized fluorescent probe exhibited dramatic activation of fluorescence upon reaction with the enzyme,r emained inside cells by anchoring itself to intracellular proteins,a nd provided singlecell resolution. Neurons labeled with this probe preserved spontaneous firing, whichw as enhanced by application of ligands of receptors expressed in the cells,s uggesting that this probe would be applicable to investigate functions of targeted cells in living tissues and organisms.
Dendron lipids designed to consist of amine-terminated polyamidoamine G1 dendron and two octadecyl chains were used for the preparation of pH-responsive molecular assemblies having phase structures that are changed through their dynamic molecular shape. The dendron lipid contains two primary amines and two tertiary amines in the dendron moiety, changing its charged state in the pH region between pH 10 and pH 4. The assemblies were shown to take a vesicle structure at neutral and alkaline pHs, but their structure changed to a micelle-like structure below pH 6.4. Because this pH region corresponds to one in which tertiary amines of the dendron lipid became protonated, protonation of tertiary amines in addition to primary amines in the dendron moiety might affect its dynamic molecular shape, resulting in a sharp pH response of the assemblies. The assemblies tended to form aggregates when taking on a vesicle form with a gel phase, but incorporation of a poly(ethylene glycol)-lipid provided dendron lipid vesicles with both sharp pH response and high colloidal stability. The poly(ethylene glycol)-incorporated dendron lipid vesicles tightly retained ovalbumin molecules in their internal aqueous space but released them almost completely at pH 6.0. In addition, the vesicles were shown to achieve efficient ovalbumin delivery into cytosol of DC2.4 cells (mouse dendritic cell line) after internalization through endocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.