Bulk Mg2Si crystals were grown using the vertical Bridgman melt growth method. The n-type and p-type dopants, bismuth (Bi) and silver (Ag), respectively, were incorporated during the growth. X-ray powder diffraction analysis revealed clear peaks of Mg2Si with no peaks associated with the metallic Mg and Si phases. Residual impurities and process induced contaminants were investigated by using glow discharge mass spectrometry (GDMS). A comparison between the results of GDMS and Hall effect measurements indicated that electrical activation of the Bi doping in the Mg2Si was sufficient, while activation of the Ag doping was relatively smaller. It was shown that an undoped n-type specimen contained a certain amount of aluminum (Al), which was due either to residual impurities in the Mg source or the incorporation of process-induced impurities. Thermoelectric properties such as the Seebeck coefficient and the electrical and thermal conductivities were measured as a function of temperature up to 850 K. The dimensionless figures of merit for Bi-doped and Ag-doped samples were 0.65 at 840 K and 0.1 at 566 K, respectively. Temperature dependence of the observed Seebeck coefficient was fitted well by the two-carrier model. The first-principles calculations were carried out by using the all-electron band-structure calculation package (ABCAP) in which the full-potential linearized augmented-plane-wave method was employed. The ABCAP calculation adequately presents characteristics of the Seebeck coefficients for the undoped and heavily Bi-doped samples over the whole measured temperature range from room temperature to 850 K. The agreement between the theory and the experiment is poorer for the Ag-doped p-type samples.
A full-potential augmented-plane-wave (FLAPW) band-structure calculation in the local density approximation (LDA) was carried out for hexagonal Na(x)CoO(2) (x = 0.45, 0.55, 0.66 and 0.75). The Seebeck tensor was estimated by the Boltzmann theory, assuming that the relaxation time is constant on the Fermi surface. The Seebeck tensor is extremely anisotropic; the c-axis Seebeck coefficient varies dramatically with the Na content. The calculation reproduces the experiment semiquantitatively.
Human skin stratum corneum (SC) structures were investigated by electron diffraction (ED) with a very low-flux electron beam with the help of high-sensitivity detectors, the imaging plate and the CCD camera. This low-flux electron diffraction (LFED) method made it possible to minimize the unfavorable effect of electron beam damage and to give a reliable diffraction pattern from a small selected area (0.2μm(2)) on a corneocyte. Dependence of the 2-dimensional ED pattern on the size of the selected area showed that orientational correlation between lipid packing domains can persist over the area much larger than their domain size. The LFED method also allowed us to trace the detailed structural change induced by the electron beam damage. The ED diffraction peak for the lattice constant of about 4.1nm decayed in three steps. The detailed analysis of these three steps suggested that a different type of orthorhombic structure exists interacted with the well-described hexagonal and orthorhombic structures, in the process of decay resulting from electron beam damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.