Glutamic acid decarboxylase antibodies (GAD65Ab) are common in new onset Caucasian insulin-dependent diabetic (IDDM) patients but it is unclear if this marker is also prevalent in patients of other ethnic backgrounds. We determined antibodies against human recombinant GAD in Japanese diabetic patients using a radioimmunoassay with competition between in vitro translated 35S-GAD65 and non-labelled recombinant human GAD65 (rhGAD65). GAD67 antibodies (GAD67Ab) were similarly analyzed but without antigen competition. In 73 Japanese diabetic patients, GAD65Ab were found in 11/16 (69%) of patients with short-duration (less than 5 yrs) IDDM, 6/23 (26%) with long-duration (5 or more yrs) IDDM and 10/20 (50%) with slowly progressive diabetes. High GAD65Ab levels were associated with concomitant autoimmune diseases (p = 0.021). GAD67Ab were found in 4/16 (25%) of patients with short-duration IDDM, 3/23 (13%) with long-duration IDDM and 2/20 (10%) with slowly progressive diabetes. In 14 non-insulin dependent diabetic (NIDDM) patients, GAD65Ab and GAD67Ab were not found (0/14) and 1/50 (2%) healthy controls were positive in either assay. Among the GAD67Ab-positive samples, 8/9 (88%) were also high level GAD65Ab positive, 7/9 (77%) were displaced by an excess of rhGAD65 and the antibody levels correlated (r2 = 0.573; p = 0.003). Our data are consistent with a strong association of GAD65Ab also in Japanese IDDM, and suggest that, when present, GAD67Ab are frequently directed to epitope(s) common to GAD65 and GAD67.
The cytotoxicity of macrophages from non-obese diabetic (NOD) mice against murine mastocytoma (P-815), and murine beta-cell lines having the NOD gene background (MIN6N-9a), were examined. Peritoneal exudate cells from 20-week-old mice showed higher cytotoxicity, measured as inhibition of thymidine uptake into P-815, than those from 12-week-old mice (p < 0.01). In cyclophosphamide-injected mice, cytotoxicity of peritoneal exudate cells had increased at 8 days post-injection, at which time the mice were not diabetic. To confirm macrophage cytotoxicity against pancreatic cells and examine its cytolytic mechanism, the cytotoxicity of peritoneal exudate cells from cyclophosphamide-injected NOD mice against MIN6N-9a cells was measured by the chromium release assay. These peritoneal exudate cells showed higher cytotoxicity as compared to those of saline-injected mice (p < 0.001). Macrophages were demonstrated to be the major component of peritoneal exudate cells (50%) by flowcytometric analyses. Cytotoxicity increased with macrophage enrichment by adhesion (p < 0.01). Furthermore, a macrophage toxin, silica, completely blocked the cytotoxicity (p < 0.001). Cytokines (interleukin 1 and tumour necrosis factor) and a nitric-oxide-producing vasodilator, sodium nitroprusside, were cytotoxic to MIN6N-9a cells but only sodium nitroprusside showed cytotoxicity when incubated for the same period as peritoneal exudate cells. Thus, macrophages play an important role in beta-cell destruction and soluble factors other than cytokines (e.g. nitric oxide) may be mediators of this early cytolytic process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.