Macrophages are involved in low-grade inflammation in diabetes, and play pathogenic roles in proliferative diabetic retinopathy (PDR) by producing proinflammatory cytokines. T cells as well as other cells are also activated by proinflammatory cytokines, and infiltration into the vitreous of patients with PDR has been shown. In this study, we measured helper T (Th) cell-related cytokines in the vitreous of PDR patients to define the characteristics of Th-mediated immune responses associated with PDR. The study group consisted of 25 type 2 diabetic patients (25 eyes) with PDR. The control group consisted of 27 patients with epiretinal membrane (ERM), 26 patients with idiopathic macular hole (MH), and 26 patients with uveitis associated with sarcoidosis. Vitreous fluid was obtained at the beginning of vitrectomy, and centrifuging for cellular removals was not performed. Serum was also collected from PDR patients. IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, soluble sCD40L, and TNFα in the vitreous and serum samples were measured. Both percent detectable and levels of IL-4, IL-6, IL-17A, IL-21, IL-22, and TNFα in the vitreous were significantly higher than those in the serum in PDR patients. Vitreous levels of these cytokines and IL-31 were significantly higher in PDR than in ERM or MH patients. Vitreous levels of IL-4, IL-17A, IL-22, IL-31, and TNFα in PDR patients were also significantly higher than those of sarcoidosis patients. In PDR patients, vitreous IL-17A level correlated significantly with vitreous levels of IL-22 and IL-31, and especially with IL-4 and TNFα. Although it is unclear whether these cytokines play facilitative roles or inhibitory roles for the progression of PDR, the present study indicated that Th2- and Th17-related immune responses are involved in the pathogenesis of PDR.
Age-related macular degeneration (AMD) is a cause of blindness in people older than 50 years. Accumulating evidence indicates the involvement of systemic and local inflammation in the pathogenesis and progression of AMD. Aflibercept is an anti-vascular endothelial growth factor (VEGF) inhibitor, and intravitreal injection of aflibercept (IVA) is the approved treatments of neovascular AMD (nAMD), but the effect on inflammatory response remains unclear. The aim of our study was to investigate the profiles of inflammatory cytokines in the aqueous humor of nAMD patients before and after initiation of IVA. In nAMD patients, IP-10 level was significantly higher and IL-6 level was significantly lower compared with those of cataract patients as controls. Logistic regression analysis identified IP-10 as a positive factor and IL-6 a negative factor associated with the pathogenesis of nAMD. In addition, IP-10 level correlated positively with the mean thickness of macula in the central 1-mm diameter circle. After initiation of IVA, IP-10 level was further elevated, and correlated negatively with VEGF level. These data suggest that IP-10 plays a critical role as an antiangiogenic factor and at the same time an inflammatory factor in the pathogenesis and pathophysiology of nAMD eyes at onset and after IVA initiation.
Aims Lifestyle-related diseases promote atherosclerosis, a chronic inflammatory disease; however, the molecular mechanism remains largely unknown. Endogenous DNA fragments released under over-nutrient condition provoke sterile inflammation through the recognition by DNA sensors. Here, we investigated the role of stimulator of interferon genes (STING), a cytosolic DNA sensor, in atherogenesis. Methods and results Apolipoprotein E-deficient (Apoe−/−) mice fed a western-type diet (WTD), a hypercholesterolaemic mouse model, showed higher STING expression and markers for DNA damage such as γH2AX, p53, and single-stranded DNA (ssDNA) accumulation in macrophages in the aorta compared with wild-type (WT) mice. The level of cGAMP, a STING agonist, in the aorta was higher in Apoe−/− mice. Genetic deletion of Sting in Apoe−/− mice reduced atherosclerotic lesions in the aortic arch, lipid, and macrophage accumulation in plaques, and inflammatory molecule expression in the aorta compared with the control. Pharmacological blockade of STING using a specific inhibitor, C-176, ameliorated atherogenesis in Apoe−/− mice. In contrast, bone marrow-specific STING expression in Apoe−/− mice stimulated atherogenesis. Expression or deletion of STING did not affect metabolic parameters and blood pressure. In vitro studies revealed that STING activation by cGAMP or mitochondrial DNA accelerated inflammatory molecule expression (e.g. TNF-α or IFN-β) in mouse and human macrophages. Activation of nuclear factor-κB and TANK binding kinase 1 was involved in STING-associated vascular inflammation and macrophage activation. Furthermore, human atherosclerotic lesions in the carotid arteries expressed STING and cGAMP. Conclusion Stimulator of interferon genes stimulates pro-inflammatory activation of macrophages, leading to the development of atherosclerosis. Stimulator of interferon genes signalling may serve as a potential therapeutic target for atherosclerosis.
Treatment of uveitis is complicated because of its multiple aetiologies and elevation of various inflammatory mediators. To determine the mediators that are elevated in the vitreous humor according to the aetiology of the uveitis, we examined the concentrations of 21 inflammatory cytokines, 7 chemokines, and 5 colony-stimulating/growth factors in vitreous samples from 57 eyes with uveitis associated with intraocular lymphoma (IOL, n = 13), sarcoidosis (n = 15), acute retinal necrosis (ARN, n = 13), or bacterial endophthalmitis (BE, n = 16). Samples from eyes with idiopathic epiretinal membrane (n = 15), which is not associated with uveitis, were examined as controls. Heat map analysis demonstrated that the patterns of inflammatory mediators in the vitreous humor in eyes with uveitis were disease-specific. Pairwise comparisons between the 5 diseases showed specific elevation of interferon-α2 in ARN and interleukin (IL)-6, IL-17A, and granulocyte-colony stimulating factor in BE. Pairwise comparisons between IOL, ARN, and BE revealed that levels of IL-10 in IOL, RANTES (regulated on activation, normal T cell expressed and secreted) in ARN, and IL-22 in BE were significantly higher than those in the other 2 types of uveitis. These mediators are likely to be involved in the immunopathology of specific types of uveitis and may be useful biomarkers. Uveitis affects more than 2 million people worldwide 1 , is a leading cause of visual impairment in the working population, and accounts for 10% of the worldwide burden of blindness 2. Uveitis is defined as intraocular inflammation involving the iris, ciliary body, and choroid and has more than 60 known aetiologies 3. Depending on the aetiology, uveitis is classified clinically by the International Uveitis Study Group as infectious uveitis (IU), non-infectious uveitis (NIU), masquerade syndrome (malignant), or other (idiopathic) 4. IU is caused by infectious agents, including viruses, bacteria, fungi, and protozoa. Acute retinal necrosis (ARN) is a representative type of IU and is a devastating necrotising retinitis caused by herpes simplex virus (HSV) or varicella zoster virus (VZV) 5. Bacterial endophthalmitis (BE) is also a leading IU that causes severe necrotising retinitis and dense vitritis; it usually progresses rapidly and has a poor visual prognosis. On the other hand, intraocular lymphoma (IOL), also known as vitreoretinal lymphoma, is representative of masquerade syndrome, which is characterised by two ocular manifestations, i.e., vitreous cellular infiltration and subretinal tumor infiltration 6. IOL is a life-threatening disease because of its high relapse rate in the central nervous system despite aggressive systemic chemotherapy and/or radiotherapy 7 , and its 5-year overall survival rate has been reported to be 61% 8. Therefore, in clinical practice, early diagnosis of uveitis and appropriate aetiology-specific treatment is important. However,
Angiogenesis defines the process in which new vessels grow from existing vessels. Using the mouse retina as a model system, we show that cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is highly expressed in angiogenic endothelial cells. Conditional deletion of the Crim1 gene in vascular endothelial cells (VECs) causes delayed vessel expansion and reduced vessel density. Based on known Vegfa binding by Crim1 and Crim1 expression in retinal vasculature, where angiogenesis is known to be Vegfa dependent, we tested the hypothesis that Crim1 is involved in the regulation of Vegfa signaling. Consistent with this hypothesis, we showed that VEC-specific conditional compound heterozygotes for Crim1 and Vegfa exhibit a phenotype that is more severe than each single heterozygote and indistinguishable from that of the conditional homozygotes. We further showed that human CRIM1 knockdown in cultured VECs results in diminished phosphorylation of VEGFR2, but only when VECs are required to rely on an autocrine source of VEGFA. The effect of CRIM1 knockdown on reducing VEGFR2 phosphorylation was enhanced when VEGFA was also knocked down. Finally, an anti-VEGFA antibody did not enhance the effect of CRIM1 knockdown in reducing VEGFR2 phosphorylation caused by autocrine signaling, but VEGFR2 phosphorylation was completely suppressed by SU5416, a small-molecule VEGFR2 kinase inhibitor. These data are consistent with a model in which Crim1 enhances the autocrine signaling activity of Vegfa in VECs at least in part via Vegfr2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.