IntroductionThe 3-dimensional scaffold plays a key role in volume and quality of repair tissue in periodontal tissue engineering therapy. We fabricated a novel 3D collagen scaffold containing carbon-based 2-dimensional layered material, named graphene oxide (GO). The aim of this study was to characterize and assess GO scaffold for periodontal tissue healing of class II furcation defects in dog.Materials and methodsGO scaffolds were prepared by coating the surface of a 3D collagen sponge scaffold with GO dispersion. Scaffolds were characterized using cytotoxicity and tissue reactivity tests. In addition, GO scaffold was implanted into dog class II furcation defects and periodontal healing was investigated at 4 weeks postsurgery.ResultsGO scaffold exhibited low cytotoxicity and enhanced cellular ingrowth behavior and rat bone forming ability. In addition, GO scaffold stimulated healing of dog class II furcation defects. Periodontal attachment formation, including alveolar bone, periodontal ligament-like tissue, and cementum-like tissue, was significantly increased by GO scaffold implantation, compared with untreated scaffold.ConclusionThe results suggest that GO scaffold is biocompatible and possesses excellent bone and periodontal tissue formation ability. Therefore, GO scaffold would be beneficial for periodontal tissue engineering therapy.
Surface pre-reacted glass-ionomer (S-PRG) fillers release antibacterial borate and fluoride ions. We fabricated nanoscale S-PRG fillers (S-PRG nanofillers) for antibacterial coating of tooth surfaces and assessed the antibacterial effects of this coating in vitro. In addition, we creating a canine model of periodontitis to evaluate the effectiveness of S-PRG nanofiller application on tooth roots and improvement of periodontal parameters.Methods: Human dentin blocks were coated with S-PRG nanofiller (average particle size: 0.48 μm) and then characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDX), and ionreleasing test. Antibacterial effects of dentin blocks coated with S-PRG nanofiller were examined using bacterial strains, Streptococcus mutans and Actinomyces naeslundii. Next, we created an experimental model of periodontitis in furcation of premolars of beagle dogs. Then, S-PRG nanofiller coating was applied onto exposed tooth root surfaces. Periodontal parameters, gingival index (GI), bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment level (CAL), were measured from baseline until 4 weeks. In addition, bone healing was radiographically and histologically examined. Results: SEM and EDX revealed that S-PRG nanofillers uniformly covered the dentin surface after coating. Dentin blocks coated with S-PRG nanofiller showed ion-releasing property, bacterial growth inhibition, and sterilization effects. In the experimental periodontitis model, S-PRG nanofiller coating significantly reduced clinical inflammatory parameters, such as GI (P < 0.01) and BOP (P < 0.05), compared to uncoated samples. In addition, PPD and CAL significantly decreased by S-PRG nanofiller coating (2 weeks: P < 0.05; 3 and 4 weeks: P < 0.01), suggesting the improvement of periodontitis. Micro-CT and histology revealed that bone healing of furcation defects was enhanced by S-PRG nanofiller coating. Conclusion: S-PRG nanofiller coating provides antibacterial effects to tooth surfaces and improves clinical parameters of periodontitis.
Recombinant human collagen peptide, developed based on human collagen type I, contains an arginyl‐glycyl‐aspartic acid (RGD)‐rich motif to enhance cell behavior and is anticipated as a xeno‐free polymer material for use in tissue engineering. We fabricated granules containing recombinant human collagen peptide (RCP) applied with beta‐tricalcium phosphate fine particles (RCP/β‐TCP) as bone filling scaffold material and assessed the bone forming ability of RCP/β‐TCP. Recombinant peptide was thermal crosslinked and freeze‐dried to prepare RCP. An aqueous dispersion of β‐TCP fine particles was added to RCP to obtain RCP/β‐TCP. Subsequently, RCP/β‐TCP were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray spectrometry (EDX), and cell culture assessments. Furthermore, RCP/β‐TCP were implanted into rat cranial bone defects for radiographic and histological evaluations. In SEM and EDX analyses of RCP/β‐TCP, β‐TCP particles dose‐dependently covered the surface of RCP. Cell culture tests showed that RCP/β‐TCP remarkably promoted proliferation and mRNA expression of various genes, such as integrin β1 and osteogenic markers, of osteoblastic MC3T3‐E1 cells. Histomorphometric assessment at 4 weeks showed that RCP/β‐TCP significantly promoted new skull bone formation compared to RCP (p < 0.05) and control (no application) (p < 0.01). Accordingly, these findings suggest RCP/β‐TCP possess bone forming capability and would be beneficial for bone tissue engineering therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.