Functional materials, especially those that largely differ from known materials, are not easily discoverable because both human experts and supervised machine learning need prior knowledge and datasets. An autonomous system can evaluate various properties a priori, and thereby explore unknown extrapolation spaces in high-throughput simulations. However, high-throughput evaluations of molecular dynamics simulations are unrealistically demanding. Here, we show an autonomous search system for organic molecules implemented by a reinforcement learning algorithm, and apply it to molecular dynamics simulations of viscosity. The evaluation is dramatically accelerated (by three orders of magnitude) using a femto-second stress-tensor correlation, which underlies the glass-transition model. We experimentally examine one of 55,000 lubricant oil molecules found by the system. This study indicates that merging simulations and physical models can open a path for simulation-driven approaches to materials informatics.
Freeway merging in congested traffic is a significant challenge toward fully automated driving. Merging vehicles need to decide not only how to merge into a spot, but also where to merge. We present a method for the freeway merging based on multi-policy decision making with a reinforcement learning method called passive actorcritic (pAC), which learns with less knowledge of the system and without active exploration. The method selects a merging spot candidate by using the state value learned with pAC. We evaluate our method using real traffic data. Our experiments show that pAC achieves 92% success rate to merge into a freeway, which is comparable to human decision making.
Investigation of neural representation of movement planning has attracted the attention of neuroscientists, as it may reveal the sensorimotor transformation essential to motor control. The analysis of muscle synergies based on the activity of agonist–antagonist (AA) muscle pairs may provide insight into such transformations, especially for a reference frame in the muscle space. In this study, we examined the AA concept using the following explanatory variables: the AA ratio, which is related to the equilibrium-joint angle, and the AA sum, which is associated with joint stiffness. We formulated muscle synergies as a function of AA sums, positing that muscle synergies are composite units of mechanical impedance. The AA concept can be regarded as another form of the equilibrium-point (EP) hypothesis, and it can be extended to the concept of EP-based synergies. We introduce, here, a novel tool for analyzing the neurological and motor functions underlying human movements and review some initial insights from our results about the relationships between muscle synergies, endpoint stiffness, and virtual trajectories (time series of EP). Our results suggest that (1) muscle synergies reflect an invariant balance in the co-activation of AA muscle pairs; (2) each synergy represents the basis for the radial, tangential, and null movements of the virtual trajectory in the polar coordinates centered on the specific joint at the base of the body; and (3) the alteration of muscle synergies (for example, due to spasticity or rigidity following neurological injury) results in significant distortion of endpoint stiffness and concomitant virtual trajectories. These results indicate that muscle synergies (i.e., the balance of muscle mechanical impedance) are essential for motor control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.