Citrullinemia is an autosomal recessive disorder caused by a genetic deficiency of argininosuccinate synthetase (ASS). So far 20 mutations in ASS mRNA have been identified in human classical citrullinemia, including 14 single base changes causing missense mutations in the coding sequence of the enzyme, 4 mutations associated with an absence of exons 5, 6, 7, or 13 in mRNA, 1 mutation with a deletion of the first 7 bases in exon 16 (which is caused by abnormal splicing), and 1 mutation with an insertion of 37 bases between the exon 15 and 16 regions in mRNA. In order to identify the abnormality in the ASS gene causing the exon 7 and 13 deletion mutations and the 37-base insertion mutation between exons 15 and 16 in mRNA, and to establish a DNA diagnostic test, we isolated and sequenced the genomic DNA surrounding each exon. The absence of exon 7 or 13 in ASS mRNA resulted from abnormal splicing caused by a single base change in the intron region: IVS-6(-2) (a transition of A to G at the second nucleotide position within the 3' splice cleavage site of intron 6) and IVS-13(+5) (a transition of G to A at the fifth nucleotide position within the 5' splice cleavage site of intron 13), respectively. The IVS-6(-2) mutation resulted in the creation of an MspI restriction site. DNA diagnostic analysis of 33 Japanese alleles with classical citrullinemia showed that 19 alleles had the IVS-6(-2) mutation (over 50% of the mutated alleles in Japanese patients). It was thus confirmed that one mutation is predominant in Japan. This differs from the situation in the USA where there is far greater heterogeneity. The insertion mutation in mRNA on the other hand resulted from abnormal splicing caused by a 13-bp deletion at the splice-junction between exon 15 and intron 15. The deletion had a short direct repeat (CTCAGG) at the breakpoint junction and presumably resulted from slipped mispairing.
We compared two recombinant a-galactosidases developed for enzyme replacement therapy for Fabry disease, agalsidase alfa and agalsidase beta, as to specific a-galactosidase activity, stability in plasma, mannose 6-phosphate (M6P) residue content, and effects on cultured human Fabry fibroblasts and Fabry mice. The specific enzyme activities of agalsidase alfa and agalsidase beta were 1.70 and 3.24 mmol h À1 mg protein À1 , respectively, and there was no difference in stability in plasma between them. The M6P content of agalsidase beta (3.6 mol/mol protein) was higher than that of agalsidase alfa (1.3 mol/mol protein). The administration of both enzymes resulted in marked increases in a-galactosidase activity in cultured human Fabry fibroblasts, and Fabry mouse kidneys, heart, spleen and liver. However, the increase in enzyme activity in cultured fibroblasts, kidneys, heart and spleen was higher when agalsidase beta was used. An immunocytochemical analysis revealed that the incorporated recombinant enzyme degraded the globotriaosyl ceramide accumulated in cultured Fabry fibroblasts in a dose-dependent manner, with the effect being maintained for at least 7 days. Repeated administration of agalsidase beta apparently decreased the number of accumulated lamellar inclusion bodies in renal tubular cells of Fabry mice.
Cholesterol sulfate is a highly amphipathic molecule that is present in a relatively high concentration in the epidermis of human skin, particularly in the granular layer. The physiologic significance of this finding, however, is not well-understood. Therefore, we examined expression of the gene encoding for the enzyme that sulfonates cholesterol (SULT2B1b). Of the three enzymes known to sulfonate steroids/sterols, only the SULT2B1b isozyme was detected in cultures of normal human epidermal keratinocytes (NHEK) in response to Ca(2+)-induced terminal differentiation as well as by normal human epidermal tissue. Immunocytochemical analysis of normal skin as well as specific skin disorders was carried out. In normal skin, the expression of SULT2B1b was localized to the granular layer of the epidermis similar to that of filaggrin, an acknowledged late marker of differentiation and in contrast to that of involucrin, an early marker of terminal differentiation, which was expressed throughout the suprabasal region. The confinement of SULT2B1b to the granular layer coincides with this being the area with the highest cholesterol sulfate content suggesting that the physiologic action of cholesterol sulfate is likely carried out in this region of the living epidermis. Additionally, 88% of cholesterol sulfate in NHEK was membrane-associated further suggesting a cellular location for cholesterol sulfate action.
In the era of laparoscopic surgery, the resection of a Meckel's diverticulum is a good indication for a laparoscopic procedure. In this paper, the relationship between the distribution of gastric heterotopia (GH) and the external appearance of the diverticulum was studied for the proper choice of the laparoscopic procedure. Symptomatic diverticula containing GH in eight patients were analyzed with regard to the distribution of gastric mucosa and the external appearance. While the long diverticula had the GH at the distal end, in the short diverticula it occurred in almost any area. For long diverticula, simple transverse resection with a stapling device is recommended. However, in short diverticula ileal resection with end-to-end anastomosis or wedge resection after exteriorization is recommended.
Abcb10, member 10 of the ABC transporter family, is reportedly a part of a complex in the mitochondrial inner membrane with mitoferrin-1 (Slc25a37) and ferrochelatase (Fech) and is responsible for heme biosynthesis in utero. However, it is unclear whether loss of Abcb10 causes pathological changes in adult mice. Here, we show that Abcb10 ؊/؊ mice lack heme biosynthesis and erythropoiesis abilities and die in midgestation. Moreover, we generated Abcb10 F/؊ ; Mx1-Cre mice, with Abcb10 in hematopoietic cells deleted, which showed accumulation of protoporphyrin IX and maturation arrest in reticulocytes. Electron microscopy images of Abcb10 ؊/؊ hematopoietic cells showed a marked increase of iron deposits at the mitochondria. These results suggest a critical role for Abcb10 in heme biosynthesis and provide new insights into the pathogenesis of erythropoietic protoporphyria and sideroblastic anemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.