Fertilization requires recognition, attachment, and membrane fusion between gametes. In metazoans, rapidly evolving surface proteins contribute to gamete recognition and adhesion. Flowering plants evolved a double fertilization process wherein two immotile sperm cells are delivered to female gametes by the pollen tube, guided by elaborate communications between male and female reproductive organs. Once released, the sperm cells contact female gametes directly prior to gamete fusion. It remains unclear whether active gamete recognition and attachment mechanisms are required for double fertilization. Here, we provide functional characterization of Arabidopsis GAMETE EXPRESSED 2 (GEX2), which encodes a sperm-expressed protein of unknown function. GEX2 is localized to the sperm membrane and contains extracellular immunoglobulin-like domains, similar to gamete interaction factors in algae and mammals. Using a new in vivo assay, we demonstrate that GEX2 is required for gamete attachment, in the absence of which double fertilization is compromised. Ka/Ks analyses indicate relatively rapid evolution of GEX2, like other proteins involved in male and female interactions. We conclude that surface proteins involved in gamete attachment and recognition exist in plants with immotile gametes, similar to algae and metazoans. This conservation broadens the repertoire of research for plant reproduction factors to mechanisms demonstrated in animals.
In flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization.
BackgroundPhosphoenolpyruvate carboxylase (PEPC) is a critical enzyme catalyzing the β-carboxylation of phosphoenolpyruvate (PEP) to oxaloacetate, a tricarboxylic acid (TCA) cycle intermediate. PEPC typically exists as a Class-1 PEPC homotetramer composed of plant-type PEPC (PTPC) polypeptides, and two of the subunits were reported to be monoubiquitinated in germinating castor oil seeds. By the large-scale purification of ubiquitin (Ub)-related proteins from lily anther, two types of PEPCs, bacterial-type PEPC (BTPC) and plant-type PEPC (PTPC), were identified in our study as candidate Ub-related proteins. Until now, there has been no information about the properties of the PEPCs expressed in male reproductive tissues of higher plants.ResultsExpression analyses showed that lily BTPC (LlBTPC) and Arabidopsis BTPC (AtBTPC) were significantly expressed in pollen. The fusion protein AtBTPC-Venus localized in the cytoplasm of the vegetative cell (VC). Both LlBTPC and AtBTPC expression initiated after the last mitosis before pollen germination. Lily PTPC (LlPTPC) and monoubiquitinated LlPTPC (Ub-LlPTPC) remained at constant levels during pollen development. In late bicellular pollen of lily, LlBTPC forms a hetero-octameric Class-2 PEPC complex with LlPTPC to express PEPC activity.ConclusionOur results suggest that an LlBTPC:Ub-LlPTPC:LlPTPC complex is formed in the VC cytoplasm during late pollen development. Both LlBTPC and AtBTPC expression patterns are similar to the patterns of the appearance of storage organelles during pollen development in lily and Arabidopsis, respectively. Therefore, BTPC is thought to accelerate the metabolic flow for the synthesis of storage substances during pollen maturation. Our study provides the first characterization of BTPC in pollen, the male gametophyte of higher plants.
TAXI-I (Triticum aestivum xylanase inhibitor I) is a wheat grain protein that inhibits arabinoxylan fragmentation by microbial endo-beta-1,4-xylanases used in the food industry. Although TAXI was speculated to be involved in counterattack against pathogens, there is actually no evidence to support this hypothesis. We have now demonstrated the presence of TAXI family members with isolation of two mRNA species, Taxi-III and Taxi-IV. At the nucleotide sequence level, Taxi-III and Taxi-IV were 91.7% and 92.0% identical, respectively, to Taxi-I, and Taxi-III and Taxi-IV were 96.8% identical. Accumulation of Taxi-III/IV transcripts was most evident in roots and older leaves where transcripts of Taxi-I were negligible. When challenged by fungal pathogens Fusarium graminearum and Erysiphe graminis, the concentrations of Taxi-III/IV transcripts increased significantly. In contrast, the increases in Taxi-I transcripts in response to these pathogens were rather limited. Both Taxi-I and Taxi-III/IV were strongly expressed in wounded leaves. The upstream region of Taxi-III contained W boxes and GCC boxes, which are sufficient to confer pathogen and wound inducibility on promoters. Recombinant TAXI-III protein inhibited Aspergillus niger and Trichoderma sp. xylanases: it was also active against some spelt xylan-induced xylanases of F. graminearum. These features suggest that some, but not all, TAXI-type xylanase inhibitors have a role in plant defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.