Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel ('nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination.
Clostridium botulinum neurotoxins (BoNTs) act on nerve endings to block acetylcholine release. Their potency is due to their enzymatic activity and selective high affinity binding to neurons. Although there are many pieces of data available on the receptor for BoNT, little attempt has been made to characterize the receptors for BoNT/C and BoNT/D. For this purpose, we prepared the recombinant carboxyl-terminal domain of the heavy chain (H C ) and then examined its binding capability to rat brain synaptosomes treated with enzymes and heating. Synaptosomes treated with proteinase K or heating retained binding capability to both H C /C and H C /D, suggesting that a proteinaceous substance does not constitute the receptor component. We next performed a thin layer chromatography overlay assay of H C with a lipid extract of synaptosomes. Under physiological or higher ionic strengths, H C /C bound to gangliosides GD1b and GT1b. These data are in accord with results showing that neuraminidase and endoglycoceramidase treatment decreased H C /C binding to synaptosomes. On the other hand, H C /D interacted with phosphatidylethanolamine but not with any ganglioside. Using cerebellar granule cells obtained from GM3 synthase knock-out mice, we found that BoNT/C did not elicit a toxic effect but that BoNT/D still inhibited glutamate release to the same extent as in granule cells from wild type mice. These observations suggested that BoNT/C recognized GD1b and GT1b as functional receptors, whereas BoNT/D induced toxicity in a ganglioside-independent manner, possibly through binding to phosphatidylethanolamine. Our results provide novel insights into the receptor for clostridial neurotoxin.
Mucosally ingested and inhaled antigens are taken up by membranous or microfold cells (M cells) in the follicle-associated epithelium of Peyer's patches or nasopharynx-associated lymphoid tissue. We established a novel M cell–specific monoclonal antibody (mAb NKM 16–2-4) as a carrier for M cell–targeted mucosal vaccine. mAb NKM 16–2-4 also reacted with the recently discovered villous M cells, but not with epithelial cells or goblet cells. Oral administration of tetanus toxoid (TT)– or botulinum toxoid (BT)–conjugated NKM 16–2-4, together with the mucosal adjuvant cholera toxin, induced high-level, antigen-specific serum immunoglobulin (Ig) G and mucosal IgA responses. In addition, an oral vaccine formulation of BT-conjugated NKM 16–2-4 induced protective immunity against lethal challenge with botulinum toxin. An epitope analysis of NKM 16–2-4 revealed specificity to an α(1,2)-fucose–containing carbohydrate moiety, and reactivity was enhanced under sialic acid–lacking conditions. This suggests that NKM 16–2-4 distinguishes α(1,2)-fucosylated M cells from goblet cells containing abundant sialic acids neighboring the α(1,2) fucose moiety and from non-α(1,2)-fucosylated epithelial cells. The use of NKM 16–2-4 to target vaccine antigens to the M cell–specific carbohydrate moiety is a new strategy for developing highly effective mucosal vaccines.
Several varieties of birds are affected by type C botulism. We conducted neutralization tests of culture supernatants of isolates from cases of avian botulism. Whereas the toxin produced by isolates derived from mammalian botulism was neutralized only with type C antitoxin, the toxins of all isolates related to avian botulism were neutralized with both type C and D antitoxins. An analysis of nucleotide sequences with several strains revealed that the neurotoxin gene in the isolates from avian botulism comprises two thirds of the type C neurotoxin gene and one third of the type D neurotoxin gene. This indicates that the neurotoxin of avian isolates is a mosaic of type C and D neurotoxins. We prepared three sets of primers to differentiate the gene for the mosaic form from the conserved genes of type C and D neurotoxins. The results of polymerase chain reaction with these primers indicated that all avian botulism-related isolates and specimens possess the gene for the mosaic form of the neurotoxin. The toxins purified from avian and mammalian isolates exhibited the same degree of lethality in mice, but the former showed greater toxicity to chickens than the latter. These results indicate that the mosaic neurotoxin is probably a pathogenic agent causing some forms of avian botulism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.