No abstract
Although demyelination is a cardinal feature in multiple sclerosis, axonal injury also occurs. We tested whether a delay in axonal degeneration could affect the disease severity in two models for multiple sclerosis: experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus (TMEV) infection. We compared wild-type C57BL/6 (B6) mice with C57BL/Wld s (Wld) mice, which carry a mutation that delays axonal degeneration. In EAE, both mouse strains were sensitized with myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide and showed a similar disease onset, MOG-specific lymphoproliferative responses, and inflammation during the acute stage of EAE. However, during the chronic stage, B6 mice continued to show paralysis with a greater extent of axonal damage, demyelination, and MOG-specific lymphoproliferative responses compared with Wld mice, which showed complete recovery. In TMEV infection, only Wld mice were paralyzed and had increased inflammation, virus antigen-positive cells, and TMEV-specific lymphoproliferative responses versus infected B6 mice. Because TMEV can use axons to disseminate in the brain, axonal degeneration in B6 mice might be a beneficial mechanism that limits the virus spread, whereas slow axonal degeneration in Wld mice could favor virus spread. Therefore, axonal degeneration plays contrasting roles (beneficial versus detrimental) depending on the initiator driving the disease.
The angiographically negative d-SAH pattern is associated with worse presentations and outcome. These patients are at increased risk for vasospasm and hydrocephalus requiring aggressive treatment and should therefore be cared for with a higher level of surveillance.
In Theiler's murine encephalomyelitis virus (TMEV)infection , an animal model for multiple sclerosis (MS) , axonal injury precedes inflammatory demyelinating lesions , and the distribution of axonal damage present during the early phase of infection corresponds to regions where subsequent demyelination occurs during the chronic phase. We hypothesized that axonal damage recruits inflammatory cells to sites of Wallerian degeneration , leading to demyelination. Three weeks after TMEV infection , axonal degeneration was induced in the posterior funiculus of mice by injecting the toxic lectin Ricinus communis agglutinin (RCA) I into the sciatic nerve. Neuropathology was examined 1 week after lectin injection. Control mice , infected with TMEV but receiving no RCA I , had inflammatory demyelinating lesions in the anterior/lateral funiculi. Other control mice that received RCA I alone did not develop inflammatory lesions. In contrast, RCA I injection into TMEV-infected mice induced lesions in the posterior funiculus in addition to the anterior/lateral funiculi. We found no differences in lymphoproliferative responses or antibody titers against TMEV among the groups. This suggests that axonal degeneration contributes to the recruitment of inflammatory cells into the central nervous system by altering the local microenvironment. In this scenario, lesions develop from the axon (inside) to the myelin (outside) (Inside-Out model).
The GDVII strain of Theiler's murine encephalomyelitis virus (TMEV) causes an acute fatal polioencephalomyelitis in mice. Infection of susceptible mice with the DA strain of TMEV results in an acute polioencephalomyelitis followed by chronic immune-mediated demyelination with virus persistence in the central nervous system (CNS); DA virus infection is used as an animal model for multiple sclerosis. CD1d-restricted natural killer T (NKT) cells can contribute to viral clearance and regulation of autoimmune responses. To investigate the role of CD1d in TMEV infection, we first infected CD1d-deficient mice (CD1 ؊/؊ ) and wild-type BALB/c mice with GDVII virus. Wild-type mice were more resistant to virus than CD1 ؊/؊ mice (50% lethal dose titers: wild-type mice, 10 PFU; CD1 ؊/؊ mice, 1.6 PFU). Wild-type mice had fewer viral antigen-positive cells with greater inflammation in the CNS than CD1 ؊/؊ mice. Second, an analysis of DA virus infection in CD1 ؊/؊ mice was conducted. Although both wild-type and CD1 ؊/؊ mice had similar clinical signs during the first 2 weeks after infection, CD1 ؊/؊ mice had an increase in neurological deficits over those observed in wild-type mice at 3 to 5 weeks after infection. Although wild-type mice had no demyelination, 20 and 60% of CD1 ؊/؊ mice developed demyelination at 3 and 5 weeks after infection, respectively. TMEV-specific lymphoproliferative responses, interleukin-4 (IL-4) production, and IL-4/gamma interferon ratios were higher in CD1 ؊/؊ mice than in wild-type mice. Thus, CD1d-restricted NKT cells may play a protective role in TMEV-induced neurological disease by alteration of the cytokine profile and virus-specific immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.