Ni-free Ti-base shape memory alloys (SMA) have been systematically developed by our group for biomedical applications in order to replace Ti-Ni SMAs which posses the possibility of Ni-hypersensitivity. In this study, superelastic behavior of solution-treated Ti-24 mol%Nb-3 mol%Al alloy was investigated by means of tensile tests at room temperature (RT) as well as microstructural observation. The alloy was fabricated by Ar arc-melting followed by a homogenization at 1273 K and then cold-rolled with the reduction of 99% in thickness without intermediate annealing. The cold-rolled sheets were solution treated at 1273 K for 1.8 ks in vacuum. Then, cyclic loading-unloading tensile tests were performed at RT. In the tensile tests, the tensile direction was systematically changed from rolling direction (RD) to transverse direction (TD) in the plane of the cold-rolled sheets. It was found by the tensile tests that the superelastic behavior strongly depends on the tensile direction and the number of deformation cycles. The solution-treated alloy after 99% cold rolling exhibits the best superelasticity when loaded along RD. The nature of the anisotropy in the superelastic behavior is discussed related with the texture developed during the fabrication process. It is concluded that the thermo-mechanical treatment performed in this study is quite useful as a superelastic treatment for the Ti-base SMAs, and that this alloy should be used industrially by taking into account such anisotropy of superelasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.