The melanosome is a highly specialized organelle where melanin is synthesized. Tyrosinase and tyrosinase-related protein-1 (Tyrp1) are major melanosomal membrane proteins and key enzymes for melanin synthesis in melanocytes. Inulavosin, a melanogenesis inhibitor isolated from Inula nervosa (Compositae), reduced the melanin content without affecting either the enzymatic activities or the transcription of tyrosinase or Tyrp1 in B16 melanoma cells. To our knowledge, this inhibitor is previously unreported. Electron-microscopic analyses revealed that inulavosin impaired late-stage development of melanosomes (stages III and IV), in which melanin is heavily deposited. However, it did not alter the early stages of melanosomes (stages I and II), when filamentous structure is observed. Immunofluorescence analyses showed that tyrosinase, but not Tyrp1, was specifically eliminated from melanosomes in cells treated with inulavosin. Unexpectedly, inulavosin specifically accelerated the degradation of tyrosinase but not other melanosomal/lysosomal membrane proteins (Tyrp1, Pmel17, and LGP85). The degradation of tyrosinase induced by inulavosin associated with lysosomes but not the proteasome. Interestingly, lysosomal protease inhibitors restored the melanogenesis but not the targeting of tyrosinase to melanosomes in the cells treated with inulavosin. Instead, colocalization of tyrosinase with lysosome-associated membrane protein-1 at late endosomes/multivesicular bodies and lysosomes was accentuated. Taken together, inulavosin inhibits melanogenesis as a result of mistargeting of tyrosinase to lysosomes.
In ultraviolet-induced tanning, the protein levels of various gene products critical for pigmentation (including tyrosinase and tyrosinase-related protein-1) are increased in response to ultraviolet B irradiation, but changes in mRNA levels of these factors have not been investigated in vivo. We have established an in situ hybridization technique to investigate mRNA levels of pro-opiomelanocortin, tyrosinase, tyrosinase-related protein-1, dopachrome tautomerase, P-protein, Pmel-17/gp100, and microphthalmia-associated transcription factor, and have analyzed the changes in mRNA levels in the ultraviolet B-exposed skin in vivo. The right or left forearm of each volunteer was irradiated with ultraviolet B, and skin biopsies were obtained at 2 and 5 d postirradiation. mRNA level of pro- opiomelanocortin was increased 2 d after ultraviolet B irradiation, and returned to a near-basal level after 5 d, whereas the mRNA levels of tyrosinase, tyrosinase-related protein-1, dopachrome tautomerase, P-protein, and Pmel-17/gp100 showed some or no increase at 2 d, but were significantly increased 5 d after ultraviolet B irradiation. Microphthalmia-associated transcription factor mRNA was slightly increased on days 2 and 5 after ultraviolet B irradiation. Our results suggest that the mechanism of the tanning response of human skin may involve the transcriptional regulation of certain pigmentary genes, and that pro-opiomelanocortin-derived melanocortins such as alpha-melanocyte-stimulating hormone and adrenocorticotropic hormone may play a part in regulating these genes in vivo.
Melanocortin-1 receptor (MC1R) is a highly polymorphic gene. The variety of the variants is dependent on the ethnic background of the individual. In Caucasians, specific variants, such as Arg151Cys, Arg160Trp, and Asp294His, are strongly associated with red hair, skin cancer and pigmented lesions. In Asians, there is no report so far indicating an association such as that observed in Caucasians. Here, we performed an association study on melanogenic phenotypes in 245 Japanese individuals. We focused on freckles and solar lentigines as melanogenic phenotypes. The 92Met allele and the 163Arg allele were positively associated with freckles and severe solar lentigines; the 163Gln allele showed a negative association. Those subjects who were homozygous for both the 92Met and 163Arg alleles had a highly elevated risk of developing freckles (OR: 7.92; 95% CI: 1.52-39.6) and severe solar lentigines (OR: 4.08; 95% CI: 1.34-13.1). Our study is the first report to show a clear association of MC1R variants on melanogenic phenotypes in Asians and also indicates the importance of Arg163Gln. In vitro studies by other groups demonstrated that Val92Met impaired MC1R function but Arg163Gln did not. Based on these in vitro studies, we believe that the result we observed for Val92Met could be attributed to impaired MC1R function, while, for Arg163Gln, other factors, e.g. effect of other loci, need to be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.