The authors proposed a newly three-dimensional isolation system, consisting of a rubber bearing, vertical oil dampers and disc spring units, to reduce the seismic response in the vertical direction as well as horizontal direction. This isolation system is employed with a number of disc spring units to provide the vertical restoring force to the superstructure. The disc spring units are combined by three disc springs in parallels and they are are stacked in six serials. The vertical restoring force has susceptible to the variation forces for the individual disc springs because the disc spring units are combined in the six serials. The The purpose of this paper is to present two kinds of proposal to improve the quality control of our isolation system and the prediction accuracy of seismic response. The first is to create the the optimal combination method for the disc spring units using the meta-heuristic algorithm to minimize the variation of vertical vertical restoring force. The proposed optimal method was verified through the result of static loading tests using the 72 disc springs which have the half dimensions to full scale. The second is to create a newly analytical model for the friction force caused by polymeric materials. The proposed analytical model was verified by comparing the loading test results. Moreover, the seismic isolation performances were clarified by the seismic response analysis that consider the vertical restoring force of the disc spring units which were combined using the optimal method and the friction force of sliding elements which were modeled by the proposed friction model. This analytical result revealed that our isolation system can reduce the seismic response not only for the high frequency components but also the low frequency ones.
The seismic isolation system consisting of laminated rubber bearings is applied to development of the Sodium-cooled Fast Reactor (SFR) in Japan. While rubber bearings as horizontal isolation system have been expected to be ensured seismic safety margin of components installed in reactor building against horizontal seismic load, vertical isolation systems have been also studied in order to tolerate to the seismic load which has been increased steadily. In this paper, the three dimensional seismic isolation system by combining coned disc springs with rubber bearings is proposed as a concept which consists of isolation devices with abundant track record. Analytical study for this system results that the rocking motion can be suppressed by itself without any suppression system and that the mitigation of vertical response can be enough for buckling design of the reactor vessel simultaneously. In particular, it is important that the vertical natural frequency of system is within the range of 3Hz to 5Hz. Besides, layout, size and stacks of coned discs in the unit of system are studied in order to obtain suitable for specification to SFR buildings.
Some studies concerning ultimate strength of piping under seismic loads concluded that there is a large design margin until failure, even if the stress calculated based on the current design method does not satisfy design criteria. To provide a more rational seismic design, a new Code Case for seismic design of piping is now under development in the framework of JSME Nuclear Codes and Standards. The Code Case incorporates a dynamic elastic-plastic analysis procedure by employing finite element analysis as an alternative to the current design analysis method of elastic assumption. To confirm the applicability of inelastic response analysis, benchmark analyses have been conducted. In the first round benchmark, a carbon steel elbow analysis was performed. In this report, a second round benchmark with a stainless steel elbow and tee is introduced. The second benchmark aims to establish an analysis procedure for stainless steel piping and tee piping of complicated shapes. The second benchmark results provided a practical analysis method for stainless steel piping, and the Code Case was expanded so that it could be applied not only to carbon steel piping but also to stainless steel piping. The second benchmark also challenged analyses of a tee having complicated geometry. These results provide some important knowledge, and they will be included in the Code Case.
A Code Case in the framework of JSME Nuclear Codes and Standards is currently being developed to incorporate seismic design evaluation of piping by detailed elastic-plastic response analysis and strain-based fatigue criteria as an alternative design rule to the current rule, in order to provide a more rational seismic design evaluation. The Code Case provides two strain-based criteria; one is a limit to maximum amplitude of equivalent strain amplitude derived from detailed analysis and the other is a limit to the fatigue usage factor also based on the equivalent strain amplitude. A guideline for piping seismic analysis based on inelastic response analysis is also being developed as a mandatory appendix for the code case. The guideline provides the methodology to obtain the elastic and plastic strains in seismic response and contains descriptions for analysis code, FE modeling including material property definition, time history analysis method, damping, seismic input condition and verification and validation method. This paper introduces the outlines of them.
In recent years, earthquakes over design condition were observed in Japan. Confirming the ultimate strength and design safety margin of mechanical components is important for the seismic integrity. This study focused on piping components, and it was one of the most important mechanical components for protecting boundary of coolant. Failure tests of thick-walled piping components for Light Water Reactors (LWRs) described previously in the literature. According to these tests, the failure mode of thick-walled piping components under seismic cyclic loading was low cycle fatigue. However, failure tests have scarcely been performed on thin-walled piping components pressurized at low levels for Fast Breeder Reactors (FBRs). This paper presents dynamic failure tests of thin-walled piping components in FBRs. Based on the test results, the failure mode, the ultimate strength, and the elastic-plastic behavior are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.