BackgroundAccording to the guidelines for cardiopulmonary resuscitation (CPR), the rotation time for chest compression should be about 2 min. The quality of chest compressions is related to the physical fitness of the rescuer, but this was not considered when determining rotation time. The present study aimed to clarify associations between body weight and the quality of chest compression and physical fatigue during CPR performed by 18 registered nurses (10 male and 8 female) assigned to light and heavy groups according to the average weight for each sex in Japan.MethodsFive-minute chest compressions were then performed on a manikin that was placed on the floor. Measurement parameters were compression depth, heart rate, oxygen uptake, integrated electromyography signals, and rating of perceived exertion. Compression depth was evaluated according to the ratio (%) of adequate compressions (at least 5 cm deep).ResultsThe ratio of adequate compressions decreased significantly over time in the light group. Values for heart rate, oxygen uptake, muscle activity defined as integrated electromyography signals, and rating of perceived exertion were significantly higher for the light group than for the heavy group.ConclusionChest compression caused increased fatigue among the light group, which consequently resulted in a gradual fall in the quality of chest compression. These results suggested that individuals with a lower body weight should rotate at 1-min intervals to maintain high quality CPR and thus improve the survival rates and neurological outcomes of victims of cardiac arrest.
Radiation detectors dedicated to time-of-flight positron emission tomography (PET) have been developed, and coincidence time resolution (CTR) of sub-100 ps full width at half maximum (FWHM) has been achieved by carefully optimizing scintillators and photodetectors. Achieving a CTR of 30 ps FWHM by using a pair of annihilation γ-rays would allow us to directly localize the annihilation point within an accuracy of 4.5 mm. Such direct localization can potentially eliminate the requirement of image reconstruction processes in clinical PET systems, which would have a huge impact on clinical protocols and molecular imaging. To obtain such a high CTR, researchers have investigated the use of prompt emissions such as Cherenkov radiation and hot-intra band luminescence. Although it is still challenging to achieve a CTR of 30 ps FWHM even with a Cherenkov-based detector, the experimentally measured CTR is approaching the goal. In this work, we developed a Cherenkov-radiator-integrated micro-channel plate photomultiplier tube (CRI-MCP-PMT), where there are no optical boundaries between the radiator and photocathode, and its timing performance was investigated. By removing the optical boundaries, reflections are eliminated and transmission to the photocathode is improved, resulting in high timing capability. As a result, a CTR of 30.1 ± 2.4 ps FWHM, which is equivalent to a position resolution of 4.5 ± 0.3 mm along a line of response (LOR), was obtained by using a pair of CRI-MCP-PMTs.
A high-performance brain PET scanner, jPET-D4, which provides four-layer depth-of-interaction (DOI) information, is being developed to achieve not only high spatial resolution, but also high scanner sensitivity. One technical issue to be dealt with is the data dimensions which increase in proportion to the square of the number of DOI layers. It is, therefore, difficult to apply algebraic or statistical image reconstruction methods directly to DOI-PET, though they improve image quality through accurate system modelling. The process that requires the most computational time and storage space is the calculation of the huge number of system matrix elements. The DOI compression (DOIC) method, which we have previously proposed, reduces data dimensions by a factor of 1/5. In this paper, we propose a transaxial imaging system model optimized for jPET-D4 with the DOIC method. The proposed model assumes that detector response functions (DRFs) are uniform along line-of-responses (LORs). Then each element of the system matrix is calculated as the summed intersection lengths between a pixel and sub-LORs weighted by a value from the DRF look-up-table. 2D numerical simulation results showed that the proposed model cut the calculation time by a factor of several hundred while keeping image quality, compared with the accurate system model. A 3D image reconstruction with the on-the-fly calculation of the system matrix is within the practical limitations by incorporating the proposed model and the DOIC method with one-pass accelerated iterative methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.