The drug interactions between a new human immune deficiency virus (HIV) protease inhibitor, amprenavir, and four other protease inhibitors which are presently used have been characterized by in-vitro metabolic studies using rat liver microsomal fractions and in-vivo oral administration studies. The metabolic clearance rates (Vmax/Km) of amprenavir, saquinavir, indinavir and nelfinavir in rat liver microsomes were 50.67+/- 3.77, 170.88 +/- 15.34, 73.01 +/- 2.76 and 126.06 +/- 6.23 microLmin(-1) (mg protein)(-1), respectively, and the degree of metabolicclearance was in the order of saquinavir > nelfinavir > indinavir > amprenavir > ritonavir. The inhibition constants (Ki) of ritonavir for amprenavir, indinavir, nelfinavir and saquinavir were 2.29, 0.95, 1.01 and 1.64 microM, respectively, and that of indinavir for amprenavir was 0.67, indicating that amprenavir metabolism in rat liver microsomes was strongly inhibited by indinavir. The Ki values of amprenavir for indinavir, nelfinavir and saquinavir were 7.41, 2.13 and 16.11 microM, respectively, and those of nelfinavirand saquinavirforamprenavirwere 9.15 and 34.57 microM, respectively. The area under the concentration vs time curve (AUC) of amprenavir after oral co-administration with saquinavir, indinavir, nelfinavir or ritonavir (20 mg kg(-1) for each oral dose in rats) was increased by 1.6-, 2.0-, 1.2- and 9.1-fold, respectively. The AUC values of saquinavir, indinavir and nelfinavir by co-administration with amprenavir showed about 7.3-, 1.3-, and 7.9-fold increase, respectively. These observations suggested that the oral bioavailability of amprenavir was not so affected by co-administration with saquinavir, nelfinavir or indinavir, compared with ritonavir, whereas amprenavir markedly affected the oral bioavailability of saquinavir and nelfinavir. In addition, the in-vivo effects after co-administration of two kinds of HIV protease inhibitors cannot always be predicted from in-vitro data, suggesting the presence of other interaction processes besides metabolism in the liver. However, these results provide useful information for the treatment of AIDS patients when they receive a combination therapy with two kinds of HIV protease inhibitor.
ABSTRACT:An in vitro system for liver organogenesis from murine embryonic stem (ES) cells has been recently established. This system is expected to be applied to the development of a new drug metabolism assay system that uses ES cells as a substitute for animal experiments. The objective of this study was to elucidate the drug metabolism profiles of the murine ES cell-derived hepatic tissue system compared with those of primary cultures of murine adult and fetal hepatocytes. The expression of the genes of the cytochrome P450 (P450) family, such as Cyp2a5, Cyp2b10, Cyp2c29, Cyp2d9, Cyp3a11, and Cyp7a1, was observed in the murine ES cell-derived hepatic tissue system at 16 days and 18 days after plating (A16 and A18). To investigate the activities of these P450 family enzymes in the murine ES cell-derived hepatic tissue system at A16 and A18, testosterone metabolism in this system was analyzed. Testosterone was hydroxylated to 6-hydroxytestosterone (6-OHT), 16␣-OHT, 2␣-OHT, and 2-OHT in this system, and was not hydroxylated to 15␣-OHT, 7␣-OHT, and 16-OHT. This metabolism profile was similar to that of fetal hepatocytes and different from that of adult hepatocytes. Furthermore, pretreatment with phenobarbital resulted in a 2.5-and 2.6-fold increase in the production of 6-OHT and 16-OHT. Thus, evidence for drug metabolic activities in relation to P450s has been demonstrated in this system. These results in this system would be a stepping stone of the research on the development and differentiation to adult liver.Embryonic stem (ES) cells are pluripotent and can differentiate in vitro and in vivo. There have been several reports on the differentiation of murine or human ES cells into hepatocyte-like or albuminproducing cells and their isolation (Chinzei et al., 2002;Jochheim et al., 2004;Shirahashi et al., 2004); these cells also differentiate into a variety of other cell lineages. Thus far, in all of the above researches, the ES cells were differentiated into a single cell lineage by the addition of specific growth factors and chemicals to the culture. Limiting these differentiation systems during in vivo liver development is considered difficult because of the multiple functions and complex structure of the liver. However, we recently succeeded in establishing an in vitro system of liver morphogenesis by using murine ES cells (Ogawa et al., 2005). This system consists of not only hepatocytes but also cell lineages such as cardiomyocytes and endothelial cells that support liver-specific functions and differentiations. The system is more efficient with respect to hepatic functions such as albumin production and ammonia degradation. Furthermore, the expression of the transthyretin, ␣-fetoprotein, ␣1-antitrypsin, and tyrosine aminotransferase genes is higher in this system than in the cultures of hepatic cell lines and murine primary cultures of adult hepatocytes. This system is expected to have many practical applications. It can be used in the development of new drugs and in drug metabolism assays as an alterna...
A sensitive and simultaneous liquid chromatographic-mass spectrometric (LC/MS) method for the determination of current four HIV protease inhibitors (PIs), indinavir (IDV), saquinavir (SQV), nelfinavir (NFV) and amprenavir (APV) in rat plasma and liver dialysate by a microdialysis method was described. An isocratic LC/MS method in combination with atmospheric pressure chemical ionization was developed for the determination of these four PIs in biological samples in the same run. The analytes including an internal standard were extracted from 100 microL of plasma or 150 microL of liver dialysate samples by salting-out with 100 microL of ice-cold 2 M K(3)PO(4) followed by ether extraction. The separation of analytes was carried out on a reversed-phase semi-micro column using 50% of acetonitrile containing 1% acetic acid as mobile phase at a flow rate of 0.2mL/min(-1). The separation was completed within 5 min. Precision, recovery and limits of detection indicated that the method was suitable for the quantitative determination of these PIs in rat plasma or liver dialysate. This simple, sensitive and highly specific LC/MS method is suitable for pharmacokinetic studies and therapeutic drug monitoring in AIDS patients who receive double protease therapy.
Throughout therapeutic drug monitoring of human immunodeficiency virus (HIV) protease inhibitors in HIV-infected patients, it was found that plasma concentrations of saquinavir (SQV) were reduced in patients who had a habit of alcohol intake during double protease therapy with SQV and ritonavir (RTV). This study confirmed the pharmacokinetic profiles of SQV during ethanol intake in rats. After oral administration of SQV alone (20 mg/kg) in rats prepared by free access to 15% ethanol solution for 14 days (day 14 rats), the area under the concentration vs time curves (AUC) showed a significant decrease (p<0.01) in comparison with control rats from 0.78+/-0.10 to 0.38+/-0.03 microg h/ml. For intravenous administration of SQV alone (5 mg/kg) to day 14 rats, the total body clearance increased significantly by 1.4-fold (p<0.05), whereas for intracolonic administration of SQV alone, no significant differences in the values of pharmacokinetic parameters were found between control and day 14 rats. With RTV, which has the strongest inhibitory effect on the CYP3A enzyme of the current HIV protease inhibitors, the AUC values of SQV at RTV doses of 2 and 20 mg/kg in day 14 rats also decreased significantly (p<0.01) from 1.30+/-0.06 to 0.57+/-0.05 microg h/ml and from 17.63+/-1.66 to 4.18+/-0.94 microg h/ml, respectively, indicating that the degree of the decrease of AUC values after oral administration with RTV after ethanol intake was larger than the mono-therapy with SQV. This study showed that ethanol-intake decreases the bioavailability of SQV after oral administration alone or with RTV. These observations provide useful information for the treatment of HIV-infected patients when they receive a combination therapy with SQV and RTV, and arouse attention for the effects of alcohol intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.