Land-use-change patterns are the result of the complex interaction between the human and the physical environment. Case studies of the determinants of land-use change can help to analyse which theory is appropriate in a particular region and stimulate the development of new theoretic understandings. In this paper an empirical method is presented to analyse the pattern of land-use change that allows a wide range of factors, from different disciplines, to contribute to the explanation of land-use change. The method is applied to the Netherlands, based on an extensive database of land-use change and its potential determinants. Historic as well as recent land-use changes are studied. Historic land-use change is related mainly to the variation in the biophysical environment. Levels of explanation are low because of the inability to address the temporal variation in location factors. For the recent changes in land use high levels of explanation are obtained. The most important changes during this period are expansions of residential, industrial/commercial, and recreational areas. The location of these changes can be explained by a combination of accessibility measures, spatial policies, and neighbourhood interactions. On the basis of these results it is possible to define priority topics for in-depth analysis of land-use-change processes and suggest factors, relations, and processes that need to be included in dynamic land-use-change models that support land-use-planning policies.
This study investigates the impact of future climate change on heavy metal (i.e., Cd and Zn) transport from soils to surface waters in a contaminated lowland catchment. The WALRUS hydrological model is employed in a semi-distributed manner to simulate current and future hydrological fluxes in the Dommel catchment in the Netherlands. The model is forced with climate change projections and the simulated fluxes are used as input to a metal transport model that simulates heavy metal concentrations and loads in quickflow and baseflow pathways. Metal transport is simulated under baseline climate (“2000–2010”) and future climate (“2090–2099”) conditions including scenarios for no climate change and climate change. The outcomes show an increase in Cd and Zn loads and the mean flux-weighted Cd and Zn concentrations in the discharged runoff, which is attributed to breakthrough of heavy metals from the soil system. Due to climate change, runoff enhances and leaching is accelerated, resulting in enhanced Cd and Zn loads. Mean flux-weighted concentrations in the discharged runoff increase during early summer and decrease during late summer and early autumn under the most extreme scenario of climate change. The results of this study provide improved understanding on the processes responsible for future changes in heavy metal contamination in lowland catchments.
As part of a more circular economy, current attention on waste is shifting from landfilling towards the prevention, re-use and recycling of waste materials. Although the need for landfills is decreasing, there are many landfills around the world that are still operational or at the point of starting the aftercare period. With traditional aftercare management, these landfills require perpetual aftercare at considerable cost due to monitoring and regular maintenance of liners. In an attempt to lower these aftercare costs, and to prevent that future generations become responsible for finding a sustainable solution of present day waste, the Dutch government takes action to explore the possibilities of sustainable landfill management. A project was started to investigate whether the use of source-oriented treatment techniques (so-called active treatment) of landfills can result in a sustainable emission reduction to soil and groundwater. During the next decade, sustainable landfill management is tested at three selected pilot landfills in the Netherlands. To enable this pilot testing and to determine its success after the experimental treatment period, a new methodology and conceptual framework was developed. The aim of this paper is to describe the development of the new methodology, and in particular the policy decisions, needed to determine whether the pilot experiments will be successful. The pilot projects are considered successful when the concentrations in the leachate of the pilot landfills have sufficiently been reduced and for longer periods of time and comply with the derived site-specific Environmental Protection Criteria (EPC). In that case, aftercare can be reduced, and it can be determined whether sustainable landfill management is economically feasible for further implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.