Instrumented footwear represents a promising technology for spatiotemporal gait analysis in out-of-the-lab conditions. However, moderate accuracy impacts this technology's ability to capture subtle, but clinically meaningful, changes in gait patterns that may indicate adverse outcomes or underlying neurological conditions. This limitation hampers the use of instrumented footwear to aid functional assessments and clinical decision making. This paper introduces new transductivelearning inference models that substantially reduce measurement errors relative to conventional data processing techniques, without requiring subject-specific labelled data. The proposed models use subject-optimized input features and hyperparameters to adjust the spatiotemporal gait metrics (i.e., stride time, length, and velocity, swing time, and double support time) obtained with conventional techniques, resulting in computationally simpler models compared to end-to-end machine learning approaches. Model validity and reliability were evaluated against a goldstandard electronic walkway during a clinical gait performance test (6-minute walk test) administered to N=95 senior residents of assisted living facilities with diverse levels of gait and balance impairments. Average reductions in absolute errors relative to conventional techniques were −42.0% and −33.5% for spatial and gait-phase parameters, respectively, indicating the potential of transductive learning models for improving the accuracy of instrumented footwear for ambulatory gait analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.