Blinding disorders of the outer retina involve dysfunction and degeneration of photoreceptors. One potential approach to treat these forms of blindness is to repopulate the outer retina via a simple bolus injection of donor photoreceptors. However, this may not be ideal due to the highly polarized organization of photoreceptors that include apical light sensing photopigments and basal axon terminals. Furthermore, bolus injections create uncertainty with regard to the area, density, and retention of donor cells. Here, a novel and robust microfabrication process is developed to create 3D, micrometer-sized complex structures in ultrathin and biocompatible elastomer films (nonbiodegradable polydimethylsiloxane and biodegradable poly(glycerol-sebacate)) that can serve as polarizable photoreceptor delivery scaffolds, consisting of an array of cup-shaped photoreceptor capture wells that funnel into a microchannel. This "wine glass" scaffold design promotes efficient capture of human pluripotent stem-cell-derived photoreceptor cell bodies and guidance of basal axon extensions, ultimately achieving a uniform level of organization and polarization that is not possible with bolus injections or previously described scaffolds. In addition to future therapeutic applications, our scaffold design and materials provide a platform to generate reproducible and scalable in vitro models of photoreceptor-based diseases.
Stretchable electrical interconnects based on serpentines combined with elastic materials are utilized in various classes of wearable electronics. However, such interconnects are primarily for direct current or low-frequency signals and incompatible with microwave electronics that enable wireless communication. In this paper, design and fabrication procedures are described for stretchable transmission line capable of delivering microwave signals. The stretchable transmission line has twisted-pair design integrated into thin-fi lm serpentine microstructure to minimize electromagnetic interference, such that the line's performance is minimally affected by the environment in close proximity, allowing its use in thin-fi lm bioelectronics, such as the epidermal electronic system. Detailed analysis, simulations, and experimental results show that the stretchable transmission line has negligible changes in performance when stretched and is operable on skin through suppressed radiated emission achieved with the twisted-pair geometry. Furthermore, stretchable microwave low-pass fi lter and band-stop fi lter are demonstrated using the twisted-pair structure to show the feasibility of the transmission lines as stretchable passive components. These concepts form the basic elements used in the design of stretchable microwave components, circuits, and subsystems performing important radio frequency functionalities, which can apply to many types of stretchable bioelectronics for radio transmitters and receivers.
In this study, the light absorption property of Ge nanomembrane (Ge NM), which incorporates hydrogen (H), in near-infrared (NIR) wavelength range was analyzed. Due to the presence of a large amount of structural defects, the light absorption coefficient of the Ge layer becomes much higher (10 times) than that of bulk Ge in the wavelength range of 1000 ~1600 nm. Increased light absorption was further measured from released Ge NM that has H incorporation in comparison to that of bulk Ge, proving the enhanced light absorption coefficient of H incorporated Ge. Finally, metal-semiconductor-metal (MSM) photodetectors were demonstrated using the H incorporated Ge on GeOI.
Photolithography based on optical mask is widely used in academic research laboratories due to its low cost, simple mechanism, and ability to pattern in micron-sized features on a wafer-scale area. Because the resolution is bound by diffraction limits of the light source, nanoscale patterning using photolithography requires short-wavelength light source combined with sophisticated optical elements, adding complexity and cost. In this paper, a novel method of subwavelength patterning process using conventional i-line mercury lamp is introduced, without the use of such advanced optical tools. The method utilizes the re-entrant geometry of image reversal photoresist produced from the developing process, where a secondary mask is generated by isotropically depositing a metal layer to cover the re-entrant profile of the photoresist. Removing the photoresist by applying ultrasonic vibrations in acetone bath uniformly cracks the metal layer at the sidewalls of the re-entrant profile, exposing the substrate with a reduced feature size. The width of the initial mask pattern can be reduced by 400 nm in a controlled manner, regardless of the original width choice. As a result, the method is shown to achieve sub-100 nm scale linear patterns compatible for both subsequent deposition process and dry-etching process. Our approach is applicable to various shapes of the patterns and can be used in electronic device fabrication requiring nanoscale lithography patterning, such as the gate fabrication of AlGaN/GaN high-electron-mobility transistor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.