Reflecting light to a predetermined nonspecular direction is an important ability of metasurfaces, which is the basis for a wide range of applications (e.g., beam steering/splitting and imaging). However, anomalous reflection with 100% efficiency has not been achieved at optical frequencies yet, because of losses and/or insufficient nonlocal control of light waves. Here, we propose an all-dielectric quasi–three-dimensional subwavelength structure, consisting of multilayer films and metagratings, to achieve perfect anomalous reflections at optical frequencies. A complex multiple scattering process was stimulated by effectively coupling different Bloch waves and propagating waves, thus offering the metasystem the desired nonlocal control on light waves required by perfect anomalous reflections. Two perfect anomalous reflectors were demonstrated to reflect normally incident 1550-nm light to the 40°/75° directions with absolute efficiencies of 99%/99% in design (98%/88% in experiment). Our results pave the way toward realizing optical metadevices with desired high efficiencies in realistic applications.
Fragility analysis constitutes the basis in seismic risk assessment and performance-based earthquake engineering during which the probability of a structure response exceeding a certain limit state at a given seismic intensity is sought to relate seismic intensity and structural vulnerability. In this article, the seismic vulnerability assessment of a subway station structure is investigated using a probabilistic method. The Daikai subway station was selected as an example structure and its seismic responses are modeled according to the nonlinear incremental dynamic analysis procedure. The limit states are defined in terms of the deformation and waterproof performance of the subway station structure based on the central column drift angle and the structural tension damage distribution obtained from the incremental dynamic analysis. Fragility curves were developed at those limit states and the probability of exceedance at the limit states of operational, slight damage, life safety, and collapse prevention was determined for the two seismic hazard levels. Results reveal that the proposed fragility analysis implementation procedure to the subway station structure provides an effective and reliable seismic vulnerability analysis method, which is essential for these underground structural systems considering their high potential risk during seismic events.
Vectorial optical fields (VOFs) exhibiting tailored wave fronts and spatially inhomogeneous polarization distributions are particularly useful in photonic applications. However, devices to generate them, made by natural materials or recently proposed metasurfaces, are either bulky in size or less efficient, or exhibit restricted performances. Here, we propose a general approach to design metadevices that can efficiently generate two distinct VOFs under illuminations of circularly polarized lights with different helicity. After illustrating our scheme via both Jones matrix analyses and analytical model calculations, we experimentally demonstrate two metadevices in the near-infrared regime, which can generate vortex beams carrying different orbital angular momenta yet with distinct inhomogeneous polarization distributions. Our results provide an ultracompact platform for bifunctional generations of VOFs, which may stimulate future works on VOF-related applications in integration photonics.
Dynamical controls on terahertz (THz) wavefronts are crucial for many applications, but available mechanism requests tunable elements with sub-micrometer sizes that are difficult to find in the THz regime. Here, different from the local-tuning mechanism, we propose an alternative approach to construct wavefront-control meta-devices combining specifically designed metasurfaces and globally tuned graphene layers. Coupled-mode-theory (CMT) analyses reveal that graphene serves as a tunable loss to drive the whole meta-device to transit from one functional phase to another passing through an intermediate regime, exhibiting distinct far-field (FF) reflection wavefronts. As a proof of concept, we design/fabricate a graphene meta-device and experimentally demonstrate that it can reflect normally incident THz wave to pre-designed directions with different polarizations under appropriate gating voltages. We finally design a graphene meta-device and numerically demonstrate that it can generate vectorial THz beams with continuously varying polarization distributions upon gating. These findings pave the road to realizing a wide range of THz applications, such as sensing, imaging, and wireless communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.