iASPP is a negative regulator of the apoptotic function of p53, and it can enhance the ability of hematopoietic stem cells to self-renew and resist chemo- and radiation therapy. Recent study showed that iASPP could impact the proliferation and apoptosis of leukemia cells by interacting with FHL2. However, whether they have prognostic significance in acute myeloid leukemia (AML) is unknown. Eighty-four AML patients with FHL2 and iASPP expression data from The Cancer Genome Atlas database were enrolled in the study. Patients with high expressions of FHL2 and iASPP had significantly shorter event-free survival (EFS) and overall survival (OS) than patients with low expressions (P = 0.005, P = 0.003, respectively). Univariate analysis indicated that high expressions of FHL2 or iASPP were unfavorable for EFS and OS (all P < 0.05), while multivariate analysis confirmed that high FHL2 expression was an independent risk factor for EFS and OS (all P < 0.05). In patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT), however, EFS and OS were not significantly different between FHL2 or iASPP high- and low-expression groups. Our results suggested that high expressions of FHL2 and iASPP were poor prognostic factors for AML, but the prognostic effect might be overcome by allo-HSCT.
DOCK family proteins are evolutionarily conserved guanine nucleotide exchange factors for Rho GTPase with different cellular functions. It has been demonstrated that DOCK1 had adverse prognostic effect in acute myeloid leukemia (AML). We first analyzed data of 85 AML patients who were treated with chemotherapy and had available DOCK1 to DOCK11 expression information and found that DOCK1 and DOCK2 had prognostic significance in AML. In view of the known prognosis of DOCK1 in AML, we then explored the prognostic role of DOCK2. One hundred fifty-six AML patients with DOCK2 expression data were extracted from The Cancer Genome Atlas (TCGA) database and enrolled in this study. Patients were divided based on treatment modality into the chemotherapy group and the allogeneic hematopoietic stem cell transplant (allo-HSCT) group. Each group was divided into two groups by the median expression levels of DOCK2. In the chemotherapy group, high DOCK2 expression was associated with longer event-free survival (EFS, P=0.001) and overall survival (OS, P=0.007). In the allo-HSCT group, EFS and OS were not significantly different between high and low DOCK2 expression groups. Multivariate analysis showed that high DOCK2 expression was an independent favorable prognostic factor for both EFS and OS in all patients (all P<0.05). In conclusion, our results indicated that high DOCK2 expression, in contrast to DOCK1, conferred good prognosis in AML.
The mutational spectrum and molecular characteristics of acute myelomonocytic lineage leukemia, namely acute myeloid leukemia (AML) French-American-British (FAB) subtypes M4 and M5, are largely unknown. In order to explore the mutational spectrum and prognostic factors of FAB-M4 and -M5, next-generation sequencing (NGS) was performed to screen for mutated genes and fusion genes relevant to the pathogenesis of AML. Of the 63 patients enrolled in the study, 60% had more than three mutated genes. NPM1 had the highest mutation frequency, followed by DNMT3A, FLT3, NRAS, RUNX1, and TET2. Univariate analysis suggested that age ≥60 years was an independent factor for both poor event-free survival (EFS) and overall survival (OS, P = 0.009, 0.002, respectively), MYH11-CBFβ was associated with better EFS and OS (P = 0.029, 0.016, respectively). However, multivariate analysis was not able to identify any independent risk factor for survival in the cohort of FAB-M4 and -M5 patients, including peripheral white blood cell count, bone marrow blast percentage, MYH11-CBFβ, FLT3-ITD, mutations in NPM1 and DNMT3A, and allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our study provided new insight into the mutational spectrum and molecular characteristics of FAB-M4 and -M5. The clinical implications of the genetic signature of FAB-M4 and -M5 need to be further elucidated by larger studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.