Novel zinc–palladium–porphyrin bimetal metal–organic framework (MOF) nanosheets were directly synthesized by coordination chelation between Zn(II) and Pd(II) tetra(4-carboxyphenyl)porphin (TCPP(Pd)) using a solvothermal method. Furthermore, a serial of carbon nanosheets supported Pd–Zn intermetallics (Pd–Zn-ins/CNS) with different Pd: Zn atomic ratios were obtained by one-step carbonization under different temperature using the prepared Zn-TCPP(Pd) MOF nanosheets as precursor. In the carbonization process, Pd–Zn-ins went through the transformation from PdZn (650 °C) to Pd3.9Zn6.1 (~950 °C) then to Pd3.9Zn6.1/Pd (1000 °C) with the temperature increasing. The synthesized Pd–Zn-ins/CNS were further employed as catalysts for selective hydrogenation of acetylene. Pd3.9Zn6.1 showed the best catalytic performance compared with other Pd–Zn intermetallic forms.
Flower-like cobalt–molybdenum mixed-oxide microspheres (CoMo-FMs) with hierarchical architecture were successfully synthesized via a hydrothermal process and subsequent calcination step. The characterization results show that CoMo-FMs were assembled from ultrathin mesoporous nanosheets with thicknesses of around 4.0 nm, providing the composite with a large pore volume and a massive surface area. The synthesized CoMo-FMs were employed as catalysts for the aerobic oxidative desulfurization (AODS) of fuel, and the reaction results show that the optimal catalyst (CoMo-FM-2) demonstrated an outstanding catalytic performance. Over CoMo-FM-2, various thiophenic sulfides could be effective removed at 80–110 °C under an atmospheric pressure, and a complete conversion of sulfides could be achieved in at least six consecutive cycles without a detectable change in chemical compositions. Further, the catalytic mechanism was explored by conducting systemic radical trapping and transformation experiments, and the excellent catalytic performance for CoMo-FMs should be mainly due to the synergistic effect of Mo and Co elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.