The application of mass spectrometry in drug discovery, especially in drug metabolites, is very important. This present paper is at first focused on the elucidation of fragmentation patterns of the phenolic bisbenzyltetrahydroisoquinoline alkaloid, neferine, together with its analogues isoliensinine and liensinine with anti-HIV activities using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and hydrogen/deuterium (H/D) exchange. All title compounds displayed major diagnostic fragments that formed by the cleavage of the C1'--C9' bond resulting in positive group CD, and the loss of 4-ethyl-1-phenol or 4-ethyl-1-methoxybenzene following rearrangements. Their ESI-MS/MS spectra also showed the relatively stable fragment ions formed by the elimination of H2O, CH3NH2, CH3OH, and CH3-N==CH2. Secondly, the metabolites of neferine from dog hepatic microsomal incubations were analyzed and characterized by high-performance liquid chromatography (HPLC) and data-dependent ESI-MS/MS. Based on fragmentation patterns and compared with their retention times in LC, molecular weights and ultraviolet (UV) absorbances with standard compounds, six metabolites were identified as isoliensinine, liensinine and four novel bisbenzyltetrahydroisoquinoline alkaloids named as 6-O-desmethylneferine, 2'-N-desmethylneferine, 2'-N-6-O-didesmethylneferine, and 6,13-O-didesmethylneferine. All metabolites were desmethyl or didesmethyl products of neferine. The possible metabolic pathways for neferine have been proposed. The results suggest that N-demethylation and O-demethylation are two important metabolic pathways of neferine in dog hepatic microsomal incubations. This is critical for screening and development of phenolic bisbenzyltetrahydroisoquinoline alkaloids with anti-HIV activities such as neferine and its analogues isoliensinine and liensinine.
Mandelic acid (MA) is generally used as a biological indicator of occupational exposure to styrene, which is classified as a class of hazardous environmental pollutants. It was found to undergo one-directional chiral inversion (S-MA to R-MA) in Wistar and Sprague-Dawley rats in vivo. This study was aimed to explore the metabolic mechanism of chiral inversion of S-MA in vitro. S-MA was converted to R-MA in rat hepatocytes, whereas MA enantiomers remained unchanged in acidic and neutral phosphate buffers, HepG2 cells, and intestinal flora. In addition, the synthesized S-MA-CoA thioester was rapidly racemized and hydrolyzed to R-MA by rat liver homogenate and S9, cytosolic and mitochondrial fractions. The data suggest that chiral inversion of S-MA may involve the hydrolysis of S-MA-CoA, and its metabolic mechanism could be the same as that of 2-arylpropionic acid (2-APA) drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.