The inner filter effect (IFE), which results from the absorption of the excitation or emission light by absorbers, has been employed as an alternative approach in sensing systems due to its flexibility and simplicity. In this work, highly photoluminescent carbon nanodots (CDs), which were simply prepared through a new one-step microwave synthesis route, were loaded in electrospun nanofibers, and the obtained nanofibers were then successfully applied to develop a fluorescent IFE-based visual sensor for tetracycline hydrochloride (Tc) sensing in milk. This developed visual sensor has high selectivity owing to the requirements of the spectral overlap between the CDs and Tc, showing high promise in sensing chemistry with an efficient response and economic effect.
HighlightCabZIP63, indirectly activated by CaWRKY40, positively modulates transcription of CabZIP63 and CaWRKY40, enhances the binding of CaWRKY40 to its target promoters, and, therefore, increases resistance to Ralstonia solanacearum and thermotolerance.
Reproducibility in surface enhanced Raman scattering (SERS) measurements is a challenge. This work developed a facile way to make highly dispersed uniform silver nanoparticles (AgNPs) loaded in the agar/polyacrylonitrile (PAN) nanofibers by the coupling the electrospinning technology from metal complex-containing polymer solution and in situ photoreductive technique. Agar, as hydrophilic component, was introduced into the electrospinning solution considering that its abundant hydroxyl group sites could greatly improve the contents of silver ions in the polymers because of the rich silver ion chelated with the hydroxyl group, whereas hydrophilic agar was integrated with hydrophobic PAN by -OH···N≡C- hydrogen bonds as a bridge. Meanwhile, the in situ photoreductive reaction was made under different light irradiations such as desk lamp, 365 nm UV-lamp, and 254 nm UV-lamp. High yield of stable AgNPs with highly uniform and dispersion are available in the agar/PAN nanofibers after the in situ photoreductive reaction, supplying the possibility of reproducible SERS signals. To identify that concept of proof, a facile approach for the determination of malachite green (MG) in three environmental practical samples was demonstrated by using the composite nanofibrous material irradiated by 365 nm UV-lamp, giving the minimum detection concentration of MG as low as 0.1 μmol/L with a good linear response ranging from 0.1-100 μmol/L (R(2) = 0.9960).
Lysosomes, which can be easily targeted by molecules with abundant amino groups, play critical roles in endocytosis, autophagy, and phagocytosis; thus, it is important to accurately characterize lysosomes, including lysosomal pH, in living cells to understand their physiological and pathological functions. Herein, a new type of highly photoluminescent (PL) emerald carbon dots (CDs) was easily prepared through a functional preservation strategy (FPS) by simply mixing p-benzoquinone and ethanediamine at room temperature. The as-prepared CDs possessed abundant amino groups preserved from ethanediamine owing to FPS, and they exhibited excellent photostability as compared to the commercial LysoTracker probes. Consequently, they actively targeted lysosomes to sensitively respond to lysosomal pH in vitro owing to their abundant amino groups and good hydrophilicity. Thus, we could successfully monitor lysosomal pH dynamics during apoptosis in live cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.