A rolling bearing is an essential component of a rotating mechanical transmission system. Its performance and quality directly affects the life and reliability of machinery. Bearings' performance and reliability need high requirements because of a more complex and poor working conditions of bearings. A bearing with high reliability reduces equipment operation accidents, equipment maintenance costs and achieves condition-based maintenance. First in this paper, the development of technology of the main individual physical condition monitoring and fault diagnosis of rolling bearings are introduced, then the fault diagnosis technology of multi-sensors information fusion is introduced, finally the advantages, disadvantages and trends developed in the future of the detection main individual physics technology and multi-sensors information fusion technology are summarized. This paper is expected to provide the necessary basis for the follow-up study of the fault diagnosis of rolling bearings and a foundational knowledge for researchers about rolling bearings.
The ultrasonic technique is very effective in measuring lubricant film thickness in a noninvasive manner. To estimate the film thickness with reflection signals, two main ultrasonic models are often applied in cases of different film thicknesses; they are the spring model for thin films and the resonant model for thick films. However, when measuring oil film thicknesses distributed in a wide range, there is an inherent blind zone between these two models. This problem is especially prominent in online monitoring because the abrupt variation of film thickness is highly correlated with the occurrence of abnormal conditions. To address this issue, we further proposed a method using the phase spectrum of reflection coefficient which can cover a wide range of film thicknesses. The slight variation of reflection signal in the blind zone can then be identified and bridged the measurement gap between those two traditional models. A calibration rig was used to verify the theoretical analysis and the results indicated that the developed model is capable of providing reliable ultrasonic measurement of lubricant film thicknesses in a wide range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.