Research on hexagonal boron nitride (hBN) has been intensified recently due to the application of hBN as a promising system of single-photon emitters. To date, the single photon origin remains under debate even though many experiments and theoretical calculations have been performed. We have measured the pressure-dependent photoluminescence (PL) spectra of hBN flakes at low temperatures by using a diamond anvil cell device. The absolute values of the pressure coefficients of discrete PL emission lines are all below 15 meV/GPa, which is much lower than the pressure-induced 36 meV/GPa redshift rate of the hBN bandgap. These PL emission lines originate from atom-like localized defect levels confined within the bandgap of the hBN flakes. Interestingly, the experimental results of the pressure-dependent PL emission lines present three different types of pressure responses corresponding to a redshift (negative pressure coefficient), a blueshift (positive pressure coefficient), or even a sign change from negative to positive. Density functional theory calculations indicate the existence of competition between the intralayer and interlayer interaction contributions, which leads to the different pressure-dependent behaviors of the PL peak shift.
which are environmentally friendly and enable portability and high efficiency. Up to date, great progress has been made on the UVC light-emitting diodes (LEDs) by using active regions of AlGaN multiple quantum wells (MQWs) .[8-14] However, the optical output power of current UVC LEDs drops significantly as the light emission wavelength gets shorter. Those LEDs suffer from poor hole injection efficiency in high-Al-content p-type AlGaN, low internal quantum efficiency (IQE) caused by large-lattice-mismatch heteroepitaxy, and strong quantum-confined Stark effect (QCSE), as well as the absorption by the nontransparent GaN contact layers. [15][16][17] A promising approach that dramatically improves the light output power is electron-beam (e-beam) pumping, especially for the short-wavelength UVC spectral range. [3,[18][19][20][21][22][23][24] This approach allows one to bypass the need for p-type or n-type injection layers and, thus, can largely increase the carrier injection efficiency. This provides a unique advantage over conventional LEDs at UVC range, since the p-type doping for high-Al-content AlGaN is High-output-power electron-beam (e-beam) pumped deep ultraviolet (DUV) light sources, operating at 230-270 nm, are achieved by adjusting the well thickness of binary ultrathin GaN/AlN multiple quantum wells. These structures are fabricated on high-quality thermally annealed AlN templates by metal-organic chemical vapor deposition. Owing to the reduced dislocation density, large electron-hole overlap, and efficient carrier injection by e-beam, the DUV light sources demonstrate high output powers of 24.8, 122.5, and 178.8 mW at central wavelengths of 232, 244, and 267 nm, respectively. Further growth optimization and employing an e-gun with increased beam current lead to a record output power of ≈2.2 W at emission wavelength of ≈260 nm, the key wavelength for water sterilization. This work manifests the practical levels of high-output-power DUV light sources operated by using e-beam pumping method. The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adom.201801763.Solid-state deep ultraviolet (DUV) optoelectronic devices in the spectral range of 200-280 nm, i.e., ultraviolet-C (UVC), have attracted much attention for their wide applications in sterilization, medical treatment, security, solar-blind photodetection, and so on. [1][2][3][4][5][6][7] Currently, Al(Ga)N material system is the most promising candidate for solid-state UVC light sources
Quantum technologies require robust and photostable single-photon emitters. Here, room temperature operated single-photon emissions from isolated defects in aluminum nitride (AlN) films are reported. AlN films were grown on nanopatterned sapphire substrates by metal organic chemical vapor deposition. The observed emission lines range from visible to near-infrared, with highly linear polarization characteristics. The temperature-dependent line width increase shows T3 or single-exponential behavior. First-principle calculations based on density functional theory show that point defect species, such as antisite nitrogen vacancy complex (NAlVN) and divacancy (VAlVN) complexes, are considered to be an important physical origin of observed emission lines ranging from approximately 550 to 1000 nm. The results provide a new platform for on-chip quantum sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.