With the progress of society and the development of economy, people pay more and more attention to education, and traditional teaching methods are gradually unable to meet the modern teaching system. As a leader in modern information technology, virtual reality technology has developed rapidly in recent years, and virtual reality technology has also been introduced into many fields, such as teaching. Based on the immersive and extended characteristics of virtual reality, this paper proposes a virtual reality active visual interaction method based on the visual sensor. Based on virtual teaching, after 3 months of learning, the average, standard deviation, and average standard error of the experimental group’s performance are higher than those of the control group. Compared with the control group, the experimental group’s performance has increased by 8.25%. The difference is statistically significant. Learning significance ( P < 0.05 ), immersive virtual reality teaching has played a significant role in the effect, which can greatly improve the cognitive experience of students and achieve a good learning experience and effect.
Although studies have been performed on the recycled aggregate made of waste concrete for the production of new concrete, the new concrete with 100% recycled coarse aggregate and manufactured sand (abbreviated as RAMC) still needs to be researched for structural applications. In this paper, an experimental study was performed on seven groups, including fourteen reinforced RAMC beams under the simply supported four-point loading test, considering the factors of the strength of RAMC and the reinforcement ratio of longitudinal tensile rebars. Based on the test results, the cracking resistance, the bearing capacity, the crack width, the flexural stiffness and the mid-span deflection of reinforced RAMC beams in bending are discussed and examined by using the formulas of conventional reinforced concrete beams. Results show that an obvious effect of reinforcement ratio was present, while less so was that of the strength of RAMC. With the comparison of predicted values by the formulas of conventional reinforced concrete beams, the reinforced RAMC beams decreased cracking resistance by about 20%, increased crack width by about 15% and increased mid-span deflection by about 10%, although the same bearing capacity can be reached. The results directly relate to the lower tensile strength of RAMC which should be further improved.
The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sustainable development of large-scale water diversion projects. Through the investigation of relevant literature, books, web pages, materials, and discussions with relevant experts and scholars, a total of 23 factors influencing the sustainable supply chain implementation of water diversion projects were identified. Then using ISM (Interpretative Structural Modeling Method) to analyze the causality of each factor, a multi-level hierarchical structure model was obtained. The results showed that: 1) The surface-level influencing factors of the sustainable supply chain implementation of the water diversion project mainly included 8 factors such as water-saving awareness and water-saving intensity in the diversion area, water quality, water pollution and other disasters, effective incentive mechanisms, etc., and surface-level influencing factors were directly related to the sustainable supply chain implementation of water diversion projects. 2) The indirect influencing factors of the sustainable supply chain of water diversion projects included 12 factors such as the water quality and quantity guarantee rate of the supply chain, the government's enforcement of laws and regulations, water distribution, ecological compensation, and compensation mechanisms for residents in the water source area. Indirect influencing factor scan acts directly on the direct influencing factors, and intervening in the factors that can be controlled by humans is one of the important ways to improve the sustainable operation of water diversion projects. 3) The fundamental influencing factors for the sustainable supply chain implementation of water diversion projects included three factors: Resettlement
Purpose. This study investigated the efficacy of nanohydroxyapatite- (nHA-) coated biological prosthesis combined with platelet-rich plasma (PRP) in hemi hip replacement of femoral neck fracture (FNF) in the elderly. Methods. From September 2018 to September 2021, 102 elderly patients with FNF treated in our hospital were chosen and divided into two groups according to different intervention methods. Fifty-one patients in the bone cement group were treated with bone cement prosthesis, and the rest 51 patients in the observation group were treated with nHA biological prosthesis combined with PRP in hemi hip replacement. In order to explore the osteogenic effect of nHA and PRP, osteoblasts were cultured. Results. It was found that nHA and PRP could both effectively promote the proliferation of osteoblasts and improve their mineralization ability, especially when used in combination. In the course of clinical therapy, we found that the use of biological prosthesis combined with PRP could effectively reduce the level of serum procollagen type I carboxy terminal peptide (PICP) and better improve the levels of bone alkaline phosphatase (BALP) and bone Gla protein (BGP), so as to reduce the bone conversion rate and promote the formation of new bone around the prosthesis. In addition, no significant difference was found in intraoperative bleeding, operation time, hospital stay, 48 h drainage volume, partial weight-bearing time, and complete weight-bearing time between two groups. Otherwise, the use of biological prosthesis could effectively avoid the occurrence of adverse reactions such as bone cement crisis and fracture around femoral prosthesis, so as to better restore the hip function and improve patients’ life quality. Conclusions. Therefore, in hemi hip replacement of FNF in the elderly, nHA biological prosthesis combined with PRP can effectively promote the formation of new bone around the prosthesis stem, so as to obtain good initial stability, enable patients to carry out early weight-bearing exercise, and effectively avoid adverse reactions caused by bone cement prosthesis, thus improving patients’ hip function and life quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.