The most common electronics used by the vast majority of the world’s population emit low radio frequencies and they may be harmful to both skin and brain tissue. The bio-heat transfer model is numerically solved to predict the time dependent temperature distribution of micro waves as it emits to the brain caused by everyday electronics in order to understand the effects the waves have on our organs. A time dependent finite difference technique is used to model a multilayer system depicting this external heat source passing through skin, bone, and into the brain. This model accounts for the extra heat generated within the body from the chemical reactions of the tissue, whereas pervious work took this heat sources to be negligible. A relaxation time is also included in the bioheat transfer model in order to account for the response time the tissue takes caused by the perturbation. Most studies neglect this parameter. Parameters for the adult and child head model are compared. The manuscript is aimed to understand the potential threats on the human body caused by everyday use of the technologies such as Ipods, cellular phones, bluetooth’s, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.